scholarly journals flexiMAP: a regression-based method for discovering differential alternative polyadenylation events in standard RNA-seq data

Author(s):  
Krzysztof J Szkop ◽  
David S Moss ◽  
Irene Nobeli

Abstract Motivation We present flexible Modeling of Alternative PolyAdenylation (flexiMAP), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data. Results We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognized caveats of existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis. Availability and implementation The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP. Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Giacomo Baruzzo ◽  
Ilaria Patuzzi ◽  
Barbara Di Camillo

Abstract Motivation Single cell RNA-seq (scRNA-seq) count data show many differences compared with bulk RNA-seq count data, making the application of many RNA-seq pre-processing/analysis methods not straightforward or even inappropriate. For this reason, the development of new methods for handling scRNA-seq count data is currently one of the most active research fields in bioinformatics. To help the development of such new methods, the availability of simulated data could play a pivotal role. However, only few scRNA-seq count data simulators are available, often showing poor or not demonstrated similarity with real data. Results In this article we present SPARSim, a scRNA-seq count data simulator based on a Gamma-Multivariate Hypergeometric model. We demonstrate that SPARSim allows to generate count data that resemble real data in terms of count intensity, variability and sparsity, performing comparably or better than one of the most used scRNA-seq simulator, Splat. In particular, SPARSim simulated count matrices well resemble the distribution of zeros across different expression intensities observed in real count data. Availability and implementation SPARSim R package is freely available at http://sysbiobig.dei.unipd.it/? q=SPARSim and at https://gitlab.com/sysbiobig/sparsim. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Krzysztof J. Szkop ◽  
David S. Moss ◽  
Irene Nobeli

AbstractSummaryWe present flexiMAP (flexible Modeling of Alternative PolyAdenylation), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis. We show, using simulated data, that flexiMAP is very specific and outperforms in sensitivity existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognised caveats of existing methods.AvailabilityThe flexiMAP R package is available at: https://github.com/kszkop/flexiMAPScripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3238619ContactIrene Nobeli, [email protected]


Author(s):  
Wenbin Ye ◽  
Tao Liu ◽  
Hongjuan Fu ◽  
Congting Ye ◽  
Guoli Ji ◽  
...  

Abstract Motivation Alternative polyadenylation (APA) has been widely recognized as a widespread mechanism modulated dynamically. Studies based on 3′ end sequencing and/or RNA-seq have profiled poly(A) sites in various species with diverse pipelines, yet no unified and easy-to-use toolkit is available for comprehensive APA analyses. Results We developed an R package called movAPA for modeling and visualization of dynamics of alternative polyadenylation across biological samples. movAPA incorporates rich functions for preprocessing, annotation and statistical analyses of poly(A) sites, identification of poly(A) signals, profiling of APA dynamics and visualization. Particularly, seven metrics are provided for measuring the tissue-specificity or usages of APA sites across samples. Three methods are used for identifying 3′ UTR shortening/lengthening events between conditions. APA site switching involving non-3′ UTR polyadenylation can also be explored. Using poly(A) site data from rice and mouse sperm cells, we demonstrated the high scalability and flexibility of movAPA in profiling APA dynamics across tissues and single cells. Availability and implementation https://github.com/BMILAB/movAPA. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (10) ◽  
pp. 3115-3123 ◽  
Author(s):  
Teng Fei ◽  
Tianwei Yu

Abstract Motivation Batch effect is a frequent challenge in deep sequencing data analysis that can lead to misleading conclusions. Existing methods do not correct batch effects satisfactorily, especially with single-cell RNA sequencing (RNA-seq) data. Results We present scBatch, a numerical algorithm for batch-effect correction on bulk and single-cell RNA-seq data with emphasis on improving both clustering and gene differential expression analysis. scBatch is not restricted by assumptions on the mechanism of batch-effect generation. As shown in simulations and real data analyses, scBatch outperforms benchmark batch-effect correction methods. Availability and implementation The R package is available at github.com/tengfei-emory/scBatch. The code to generate results and figures in this article is available at github.com/tengfei-emory/scBatch-paper-scripts. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
David Gerard

AbstractWith the explosion in the number of methods designed to analyze bulk and single-cell RNA-seq data, there is a growing need for approaches that assess and compare these methods. The usual technique is to compare methods on data simulated according to some theoretical model. However, as real data often exhibit violations from theoretical models, this can result in un-substantiated claims of a method’s performance. Rather than generate data from a theoretical model, in this paper we develop methods to add signal to real RNA-seq datasets. Since the resulting simulated data are not generated from an unrealistic theoretical model, they exhibit realistic (annoying) attributes of real data. This lets RNA-seq methods developers assess their procedures in non-ideal (model-violating) scenarios. Our procedures may be applied to both single-cell and bulk RNA-seq. We show that our simulation method results in more realistic datasets and can alter the conclusions of a differential expression analysis study. We also demonstrate our approach by comparing various factor analysis techniques on RNA-seq datasets. Our tools are available in the seqgendiff R package on the Comprehensive R Archive Net-work: https://cran.r-project.org/package=seqgendiff.


Author(s):  
Xi Zeng ◽  
Linghao Zhao ◽  
Chenhang Shen ◽  
Yi Zhou ◽  
Guoliang Li ◽  
...  

Abstract Motivation Virus integration in the host genome is frequently reported to be closely associated with many human diseases, and the detection of virus integration is a critically challenging task. However, most existing tools show limited specificity and sensitivity. Therefore, the objective of this study is to develop a method for accurate detection of virus integration into host genomes. Results Herein, we report a novel method termed HIVID2 that is a significant upgrade of HIVID. HIVID2 performs a paired-end combination (PE-combination) for potentially integrated reads. The resulting sequences are then remapped onto the reference genomes, and both split and discordant chimeric reads are used to identify accurate integration breakpoints with high confidence. HIVID2 represents a great improvement in specificity and sensitivity, and predicts breakpoints closer to the real integrations, compared with existing methods. The advantage of our method was demonstrated using both simulated and real datasets. HIVID2 uncovered novel integration breakpoints in well-known cervical cancer-related genes, including FHIT and LRP1B, which was verified using protein expression data. In addition, HIVID2 allows the user to decide whether to automatically perform advanced analysis using the identified virus integrations. By analyzing the simulated data and real data tests, we demonstrated that HIVID2 is not only more accurate than HIVID but also better than other existing programs with respect to both sensitivity and specificity. We believe that HIVID2 will help in enhancing future research associated with virus integration. Availabilityand implementation HIVID2 can be accessed at https://github.com/zengxi-hada/HIVID2/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
A Ozuna ◽  
D Liberto ◽  
R M Joyce ◽  
K B Arnvig ◽  
I Nobeli

Abstract Summary Standard bioinformatics pipelines for the analysis of bacterial transcriptomic data commonly ignore non-coding but functional elements e.g. small RNAs, long antisense RNAs or untranslated regions (UTRs) of mRNA transcripts. The root of this problem is the use of incomplete genome annotation files. Here, we present baerhunter, a coverage-based method implemented in R, that automates the discovery of expressed non-coding RNAs and UTRs from RNA-seq reads mapped to a reference genome. The core algorithm is part of a pipeline that facilitates downstream analysis of both coding and non-coding features. The method is simple, easy to extend and customize and, in limited tests with simulated and real data, compares favourably against the currently most popular alternative. Availability and implementation The baerhunter R package is available from: https://github.com/irilenia/baerhunter Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (13) ◽  
pp. 2235-2242 ◽  
Author(s):  
Jun Li ◽  
Alicia T Lamere

Abstract Motivation In the analysis of RNA-Seq data, detecting differentially expressed (DE) genes has been a hot research area in recent years and many methods have been proposed. DE genes show different average expression levels in different sample groups, and thus can be important biological markers. While generally very successful, these methods need to be further tailored and improved for cancerous data, which often features quite diverse expression in the samples from the cancer group, and this diversity is much larger than that in the control group. Results We propose a statistical method that can detect not only genes that show different average expressions, but also genes that show different diversities of expressions in different groups. These ‘differentially dispersed’ genes can be important clinical markers. Our method uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Simulations and real data analysis demonstrate that DiPhiSeq outperforms existing methods in the presence of outliers, and identifies unique sets of genes. Availability and implementation DiPhiSeq is publicly available as an R package on CRAN: https://cran.r-project.org/package=DiPhiSeq. Supplementary information Supplementary data are available at Bioinformatics online.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1521 ◽  
Author(s):  
Charlotte Soneson ◽  
Michael I. Love ◽  
Mark D. Robinson

High-throughput sequencing of cDNA (RNA-seq) is used extensively to characterize the transcriptome of cells. Many transcriptomic studies aim at comparing either abundance levels or the transcriptome composition between given conditions, and as a first step, the sequencing reads must be used as the basis for abundance quantification of transcriptomic features of interest, such as genes or transcripts. Several different quantification approaches have been proposed, ranging from simple counting of reads that overlap given genomic regions to more complex estimation of underlying transcript abundances. In this paper, we show that gene-level abundance estimates and statistical inference offer advantages over transcript-level analyses, in terms of performance and interpretability. We also illustrate that while the presence of differential isoform usage can lead to inflated false discovery rates in differential expression analyses on simple count matrices and transcript-level abundance estimates improve the performance in simulated data, the difference is relatively minor in several real data sets. Finally, we provide an R package (tximport) to help users integrate transcript-level abundance estimates from common quantification pipelines into count-based statistical inference engines.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document