scholarly journals Isoform-level gene expression patterns in single-cell RNA-sequencing data

2018 ◽  
Vol 34 (14) ◽  
pp. 2392-2400 ◽  
Author(s):  
Trung Nghia Vu ◽  
Quin F Wills ◽  
Krishna R Kalari ◽  
Nifang Niu ◽  
Liewei Wang ◽  
...  
iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

Author(s):  
Hyundoo Jeong ◽  
Zhandong Liu

AbstractSingle-cell RNA sequencing technology provides a novel means to analyze the transcriptomic profiles of individual cells. The technique is vulnerable, however, to a type of noise called dropout effects, which lead to zero-inflated distributions in the transcriptome profile and reduce the reliability of the results. Single-cell RNA sequencing data therefore need to be carefully processed before in-depth analysis. Here we describe a novel imputation method that reduces dropout effects in single-cell sequencing. We construct a cell correspondence network and adjust gene expression estimates based on transcriptome profiles for the local community of cells of the same type. We comprehensively evaluated this method, called PRIME (PRobabilistic IMputation to reduce dropout effects in Expression profiles of single cell sequencing), on six datasets and verified that it improves the quality of visualization and accuracy of clustering analysis and can discover gene expression patterns hidden by noise.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zechuan Chen ◽  
Zeruo Yang ◽  
Xiaojun Yuan ◽  
Xiaoming Zhang ◽  
Pei Hao

Abstract Background Single-cell RNA sequencing (scRNA-seq) is the most widely used technique to obtain gene expression profiles from complex tissues. Cell subsets and developmental states are often identified via differential gene expression patterns. Most of the single-cell tools utilized highly variable genes to annotate cell subsets and states. However, we have discovered that a group of genes, which sensitively respond to environmental stimuli with high coefficients of variation (CV), might impose overwhelming influences on the cell type annotation. Result In this research, we developed a method, based on the CV-rank and Shannon entropy, to identify these noise genes, and termed them as “sensitive genes”. To validate the reliability of our methods, we applied our tools in 11 single-cell data sets from different human tissues. The results showed that most of the sensitive genes were enriched pathways related to cellular stress response. Furthermore, we noticed that the unsupervised result was closer to the ground-truth cell labels, after removing the sensitive genes detected by our tools. Conclusion Our study revealed the prevalence of stochastic gene expression patterns in most types of cells, compared the differences among cell marker genes, housekeeping genes (HK genes), and sensitive genes, demonstrated the similarities of functions of sensitive genes in various scRNA-seq data sets, and improved the results of unsupervised clustering towards the ground-truth labels. We hope our method would provide new insights into the reduction of data noise in scRNA-seq data analysis and contribute to the development of better scRNA-seq unsupervised clustering algorithms in the future.


2021 ◽  
Author(s):  
Rajeev Vikram ◽  
Wen□Cheng Chou ◽  
Pei-Ei Wu ◽  
Wei-Ting Chen ◽  
Chen-Yang Shen

ABSTRACTBackgroundDiffuse Glioblastoma (GBM) has high mortality and remains one of the most challenging type of cancer to treat. Identifying and characterizing the cells populations driving tumor growth and therapy resistance has been particularly difficult owing to marked inter and intra tumoral heterogeneity observed in these tumors. These tumorigenic populations contain long lived cells associated with latency, immune evasion and metastasis.MethodsHere, we analyzed the single-cell RNA-sequencing data of high grade glioblastomas from four different studies using integrated analysis of gene expression patterns, cell cycle stages and copy number variation to identify gene expression signatures associated with quiescent and cycling neuronal tumorigenic cells.ResultsThe results show that while cycling and quiescent cells are present in GBM of all age groups, they exist in a much larger proportion in pediatric glioblastomas. These cells show similarities in their expression patterns of a number of pluripotency and proliferation related genes. Upon unbiased clustering, these cells explicitly clustered on their cell cycle stage. Quiescent cells in both the groups specifically overexpressed a number of genes for ribosomal protein, while the cycling cells were enriched in the expression of high-mobility group and heterogeneous nuclear ribonucleoprotein group genes. A number of well-known markers of quiescence and proliferation in neurogenesis showed preferential expression in the quiescent and cycling populations identified in our analysis. Through our analysis, we identify ribosomal proteins as key constituents of quiescence in glioblastoma stem cells.ConclusionsThis study identifies gene signatures common to adult and pediatric glioblastoma quiescent and cycling stem cell niches. Further research elucidating their role in controlling quiescence and proliferation in tumorigenic cells in high grade glioblastoma will open avenues in more effective treatment strategies for glioblastoma patients.


Author(s):  
Nadia S. Kurd ◽  
Zhaoren He ◽  
J. Justin Milner ◽  
Kyla D. Omilusik ◽  
Tiani L. Louis ◽  
...  

AbstractDuring an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of non-circulating tissue-resident memory (TRM) cells that mediate potent protection within non-lymphoid tissues. Here, we utilized single-cell RNA-sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several states of differentiation, representing functionally distinct TRM cell subsets as well as a subset of TRM cell precursors within the tissue early in infection. Taken together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.One sentence summaryHere, we applied single-cell RNA-sequencing to elucidate the gene expression patterns of individual CD8+ T cells differentiating throughout the course of infection in the spleen and small intestinal epithelium, which revealed previously unidentified molecular determinants of tissue-resident T cell differentiation as well as functional heterogeneity within the tissue-resident CD8+ T cell population.


Circulation ◽  
2020 ◽  
Vol 142 (19) ◽  
pp. 1848-1862 ◽  
Author(s):  
David T. Paik ◽  
Lei Tian ◽  
Ian M. Williams ◽  
Siyeon Rhee ◽  
Hao Zhang ◽  
...  

Background: Endothelial cells (ECs) display considerable functional heterogeneity depending on the vessel and tissue in which they are located. Whereas these functional differences are presumably imprinted in the transcriptome, the pathways and networks that sustain EC heterogeneity have not been fully delineated. Methods: To investigate the transcriptomic basis of EC specificity, we analyzed single-cell RNA sequencing data from tissue-specific mouse ECs generated by the Tabula Muris consortium. We used a number of bioinformatics tools to uncover markers and sources of EC heterogeneity from single-cell RNA sequencing data. Results: We found a strong correlation between tissue-specific EC transcriptomic measurements generated by either single-cell RNA sequencing or bulk RNA sequencing, thus validating the approach. Using a graph-based clustering algorithm, we found that certain tissue-specific ECs cluster strongly by tissue (eg, liver, brain), whereas others (ie, adipose, heart) have considerable transcriptomic overlap with ECs from other tissues. We identified novel markers of tissue-specific ECs and signaling pathways that may be involved in maintaining their identity. Sex was a considerable source of heterogeneity in the endothelial transcriptome and we discovered Lars2 to be a gene that is highly enriched in ECs from male mice. We found that markers of heart and lung ECs in mice were conserved in human fetal heart and lung ECs. We identified potential angiocrine interactions between tissue-specific ECs and other cell types by analyzing ligand and receptor expression patterns. Conclusions: We used single-cell RNA sequencing data generated by the Tabula Muris consortium to uncover transcriptional networks that maintain tissue-specific EC identity and to identify novel angiocrine and functional relationships between tissue-specific ECs.


Circulation ◽  
2020 ◽  
Vol 142 (14) ◽  
pp. 1374-1388
Author(s):  
Yanming Li ◽  
Pingping Ren ◽  
Ashley Dawson ◽  
Hernan G. Vasquez ◽  
Waleed Ageedi ◽  
...  

Background: Ascending thoracic aortic aneurysm (ATAA) is caused by the progressive weakening and dilatation of the aortic wall and can lead to aortic dissection, rupture, and other life-threatening complications. To improve our understanding of ATAA pathogenesis, we aimed to comprehensively characterize the cellular composition of the ascending aortic wall and to identify molecular alterations in each cell population of human ATAA tissues. Methods: We performed single-cell RNA sequencing analysis of ascending aortic tissues from 11 study participants, including 8 patients with ATAA (4 women and 4 men) and 3 control subjects (2 women and 1 man). Cells extracted from aortic tissue were analyzed and categorized with single-cell RNA sequencing data to perform cluster identification. ATAA-related changes were then examined by comparing the proportions of each cell type and the gene expression profiles between ATAA and control tissues. We also examined which genes may be critical for ATAA by performing the integrative analysis of our single-cell RNA sequencing data with publicly available data from genome-wide association studies. Results: We identified 11 major cell types in human ascending aortic tissue; the high-resolution reclustering of these cells further divided them into 40 subtypes. Multiple subtypes were observed for smooth muscle cells, macrophages, and T lymphocytes, suggesting that these cells have multiple functional populations in the aortic wall. In general, ATAA tissues had fewer nonimmune cells and more immune cells, especially T lymphocytes, than control tissues did. Differential gene expression data suggested the presence of extensive mitochondrial dysfunction in ATAA tissues. In addition, integrative analysis of our single-cell RNA sequencing data with public genome-wide association study data and promoter capture Hi-C data suggested that the erythroblast transformation-specific related gene( ERG ) exerts an important role in maintaining normal aortic wall function. Conclusions: Our study provides a comprehensive evaluation of the cellular composition of the ascending aortic wall and reveals how the gene expression landscape is altered in human ATAA tissue. The information from this study makes important contributions to our understanding of ATAA formation and progression.


2020 ◽  
Vol 36 (13) ◽  
pp. 4021-4029
Author(s):  
Hyundoo Jeong ◽  
Zhandong Liu

Abstract Summary Single-cell RNA sequencing technology provides a novel means to analyze the transcriptomic profiles of individual cells. The technique is vulnerable, however, to a type of noise called dropout effects, which lead to zero-inflated distributions in the transcriptome profile and reduce the reliability of the results. Single-cell RNA sequencing data, therefore, need to be carefully processed before in-depth analysis. Here, we describe a novel imputation method that reduces dropout effects in single-cell sequencing. We construct a cell correspondence network and adjust gene expression estimates based on transcriptome profiles for the local subnetwork of cells of the same type. We comprehensively evaluated this method, called PRIME (PRobabilistic IMputation to reduce dropout effects in Expression profiles of single-cell sequencing), on synthetic and eight real single-cell sequencing datasets and verified that it improves the quality of visualization and accuracy of clustering analysis and can discover gene expression patterns hidden by noise. Availability and implementation The source code for the proposed method is freely available at https://github.com/hyundoo/PRIME. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document