scholarly journals FLAS: fast and high-throughput algorithm for PacBio long-read self-correction

2019 ◽  
Vol 35 (20) ◽  
pp. 3953-3960 ◽  
Author(s):  
Ergude Bao ◽  
Fei Xie ◽  
Changjin Song ◽  
Dandan Song

Abstract Motivation The third generation PacBio long reads have greatly facilitated sequencing projects with very large read lengths, but they contain about 15% sequencing errors and need error correction. For the projects with long reads only, it is challenging to make correction with fast speed, and also challenging to correct a sufficient amount of read bases, i.e. to achieve high-throughput self-correction. MECAT is currently among the fastest self-correction algorithms, but its throughput is relatively small (Xiao et al., 2017). Results Here, we introduce FLAS, a wrapper algorithm of MECAT, to achieve high-throughput long-read self-correction while keeping MECAT’s fast speed. FLAS finds additional alignments from MECAT prealigned long reads to improve the correction throughput, and removes misalignments for accuracy. In addition, FLAS also uses the corrected long-read regions to correct the uncorrected ones to further improve the throughput. In our performance tests on Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human long reads, FLAS can achieve 22.0–50.6% larger throughput than MECAT. FLAS is 2–13× faster compared to the self-correction algorithms other than MECAT, and its throughput is also 9.8–281.8% larger. The FLAS corrected long reads can be assembled into contigs of 13.1–29.8% larger N50 sizes than MECAT. Availability and implementation The FLAS software can be downloaded for free from this site: https://github.com/baoe/flas. Supplementary information Supplementary data are available at Bioinformatics online.

2017 ◽  
Author(s):  
German Tischler ◽  
Eugene W. Myers

AbstractWhile second generation sequencing led to a vast increase in sequenced data, the shorter reads which came with it made assembly a much harder task and for some regions impossible with only short read data. This changed again with the advent of third generation long read sequencers. The length of the long reads allows a much better resolution of repetitive regions, their high error rate however is a major challenge. Using the data successfully requires to remove most of the sequencing errors. The first hybrid correction methods used low noise second generation data to correct third generation data, but this approach has issues when it is unclear where to place the short reads due to repeats and also because second generation sequencers fail to sequence some regions which third generation sequencers work on. Later non hybrid methods appeared. We present a new method for non hybrid long read error correction based on De Bruijn graph assembly of short windows of long reads with subsequent combination of these correct windows to corrected long reads. Our experiments show that this method yields a better correction than other state of the art non hybrid correction approaches.


2019 ◽  
Author(s):  
Gaoyang Li ◽  
Bo Liu ◽  
Yadong Wang

AbstractSummaryLong read sequencing technologies are promising to metagenomics studies. However, there is still lack of read classification tools to fast and accurately identify the taxonomies of noisy long reads, which is a bottleneck to the use of long read sequencing. Herein, we propose deSAMBA, a tailored long read classification approach that uses a novel sparse approximate match block (SAMB)-based pseudo alignment algorithm. Benchmarks on real datasets demonstrate that deSAMBA enables to simultaneously achieve fast speed and good classification yields, which outperforms state-of-the-art tools and has many potentials to cutting-edge metagenomics studies.Availability and Implementationhttps://github.com/hitbc/deSAMBA.Supplementary information:


2018 ◽  
Author(s):  
Tao Jiang ◽  
Bo Liu ◽  
Yadong Wang

AbstractSummaryMobile element insertion (MEI) is a major category of structure variations (SVs). The rapid development of long read sequencing provides the opportunity to sensitively discover MEIs. However, the signals of MEIs implied by noisy long reads are highly complex, due to the repetitiveness of mobile elements as well as the serious sequencing errors. Herein, we propose Realignment-based Mobile Element insertion detection Tool for Long read (rMETL). rMETL takes advantage of its novel chimeric read re-alignment approach to well handle complex MEI signals. Benchmarking results on simulated and real datasets demonstrated that rMETL has the ability to more sensitivity discover MEIs as well as prevent false positives. It is suited to produce high quality MEI callsets in many genomics studies.Availability and Implementation: rMETL is available from https://github.com/hitbc/rMETL.Contact:[email protected] information: Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2020 ◽  
Vol 36 (12) ◽  
pp. 3669-3679 ◽  
Author(s):  
Can Firtina ◽  
Jeremie S Kim ◽  
Mohammed Alser ◽  
Damla Senol Cali ◽  
A Ercument Cicek ◽  
...  

Abstract Motivation Third-generation sequencing technologies can sequence long reads that contain as many as 2 million base pairs. These long reads are used to construct an assembly (i.e. the subject’s genome), which is further used in downstream genome analysis. Unfortunately, third-generation sequencing technologies have high sequencing error rates and a large proportion of base pairs in these long reads is incorrectly identified. These errors propagate to the assembly and affect the accuracy of genome analysis. Assembly polishing algorithms minimize such error propagation by polishing or fixing errors in the assembly by using information from alignments between reads and the assembly (i.e. read-to-assembly alignment information). However, current assembly polishing algorithms can only polish an assembly using reads from either a certain sequencing technology or a small assembly. Such technology-dependency and assembly-size dependency require researchers to (i) run multiple polishing algorithms and (ii) use small chunks of a large genome to use all available readsets and polish large genomes, respectively. Results We introduce Apollo, a universal assembly polishing algorithm that scales well to polish an assembly of any size (i.e. both large and small genomes) using reads from all sequencing technologies (i.e. second- and third-generation). Our goal is to provide a single algorithm that uses read sets from all available sequencing technologies to improve the accuracy of assembly polishing and that can polish large genomes. Apollo (i) models an assembly as a profile hidden Markov model (pHMM), (ii) uses read-to-assembly alignment to train the pHMM with the Forward–Backward algorithm and (iii) decodes the trained model with the Viterbi algorithm to produce a polished assembly. Our experiments with real readsets demonstrate that Apollo is the only algorithm that (i) uses reads from any sequencing technology within a single run and (ii) scales well to polish large assemblies without splitting the assembly into multiple parts. Availability and implementation Source code is available at https://github.com/CMU-SAFARI/Apollo. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i75-i83 ◽  
Author(s):  
Alla Mikheenko ◽  
Andrey V Bzikadze ◽  
Alexey Gurevich ◽  
Karen H Miga ◽  
Pavel A Pevzner

Abstract Motivation Extra-long tandem repeats (ETRs) are widespread in eukaryotic genomes and play an important role in fundamental cellular processes, such as chromosome segregation. Although emerging long-read technologies have enabled ETR assemblies, the accuracy of such assemblies is difficult to evaluate since there are no tools for their quality assessment. Moreover, since the mapping of error-prone reads to ETRs remains an open problem, it is not clear how to polish draft ETR assemblies. Results To address these problems, we developed the TandemTools software that includes the TandemMapper tool for mapping reads to ETRs and the TandemQUAST tool for polishing ETR assemblies and their quality assessment. We demonstrate that TandemTools not only reveals errors in ETR assemblies but also improves the recently generated assemblies of human centromeres. Availability and implementation https://github.com/ablab/TandemTools. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Quang Tran ◽  
Vinhthuy Phan

Abstract Background: Most current metagenomic classifiers and profilers employ short reads to classify, bin and profile microbial genomes that are present in metagenomic samples. Many of these methods adopt techniques that aim to identify unique genomic regions of genomes so as to differentiate them. Because of this, short-read lengths might be suboptimal. Longer read lengths might improve the performance of classification and profiling. However, longer reads produced by current technology tend to have a higher rate of sequencing errors, compared to short reads. It is not clear if the trade-off between longer length versus higher sequencing errors will increase or decrease classification and profiling performance.Results: We compared performance of popular metagenomic classifiers on short reads and longer reads, which are assembled from the same short reads. When using a number of popular assemblers to assemble long reads from the short reads, we discovered that most classifiers made fewer predictions with longer reads and that they achieved higher classification performance on synthetic metagenomic data. Specifically, across most classifiers, we observed a significant increase in precision, while recall remained the same, resulting in higher overall classification performance. On real metagenomic data, we observed a similar trend that classifiers made fewer predictions. This suggested that they might have the same performance characteristics of having higher precision while maintaining the same recall with longer reads.Conclusions: This finding has two main implications. First, it suggests that classifying species in metagenomic environments can be achieved with higher overall performance simply by assembling short reads. This suggested that they might have the same performance characteristics of having higher precision while maintaining the same recall as shorter reads. Second, this finding suggests that it might be a good idea to consider utilizing long-read technologies in species classification for metagenomic applications. Current long-read technologies tend to have higher sequencing errors and are more expensive compared to short-read technologies. The trade-offs between the pros and cons should be investigated.


2021 ◽  
Author(s):  
Brandon K. B. Seah ◽  
Estienne C. Swart

Ciliates are single-celled eukaryotes that eliminate specific, interspersed DNA sequences (internally eliminated sequences, IESs) from their genomes during development. These are challenging to annotate and assemble because IES-containing sequences are much less abundant in the cell than those without, and IES sequences themselves often contain repetitive and low-complexity sequences. Long read sequencing technologies from Pacific Biosciences and Oxford Nanopore have the potential to reconstruct longer IESs than has been possible with short reads, and also the ability to detect correlations of neighboring element elimination. Here we present BleTIES, a software toolkit for detecting, assembling, and analyzing IESs using mapped long reads. Availability and implementation: BleTIES is implemented in Python 3. Source code is available at https://github.com/Swart-lab/bleties (MIT license), and also distributed via Bioconda. Contact: [email protected] Supplementary information: Benchmarking of BleTIES with published sequence data.


2019 ◽  
Vol 35 (22) ◽  
pp. 4770-4772
Author(s):  
Pay Giesselmann ◽  
Sara Hetzel ◽  
Franz-Josef Müller ◽  
Alexander Meissner ◽  
Helene Kretzmer

Abstract Summary Long-read third-generation nanopore sequencing enables researchers to now address a range of questions that are difficult to tackle with short read approaches. The rapidly expanding user base and continuously increasing throughput have sparked the development of a growing number of specialized analysis tools. However, streamlined processing of nanopore datasets using reproducible and transparent workflows is still lacking. Here we present Nanopype, a nanopore data processing pipeline that integrates a diverse set of established bioinformatics software while maintaining consistent and standardized output formats. Seamless integration into compute cluster environments makes the framework suitable for high-throughput applications. As a result, Nanopype facilitates comparability of nanopore data analysis workflows and thereby should enhance the reproducibility of biological insights. Availability and implementation https://github.com/giesselmann/nanopype, https://nanopype.readthedocs.io. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (14) ◽  
pp. i61-i70 ◽  
Author(s):  
Ivan Tolstoganov ◽  
Anton Bankevich ◽  
Zhoutao Chen ◽  
Pavel A Pevzner

Abstract Motivation The recently developed barcoding-based synthetic long read (SLR) technologies have already found many applications in genome assembly and analysis. However, although some new barcoding protocols are emerging and the range of SLR applications is being expanded, the existing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable to new barcoding technologies and new applications such as metagenomics or hybrid assembly. Results We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes algorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked cloudSPAdes across various barcoding technologies/applications and demonstrated that it improves on the state-of-the-art SLR assemblers in accuracy and speed. Availability and implementation Source code and installation manual for cloudSPAdes are available at https://github.com/ablab/spades/releases/tag/cloudspades-paper. Supplementary Information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document