scholarly journals Interactive exploration of heterogeneous biological networks with Biomine Explorer

2019 ◽  
Vol 35 (24) ◽  
pp. 5385-5388
Author(s):  
Vid Podpečan ◽  
Živa Ramšak ◽  
Kristina Gruden ◽  
Hannu Toivonen ◽  
Nada Lavrač

Abstract Summary Biomine Explorer is a web application that enables interactive exploration of large heterogeneous biological networks constructed from selected publicly available biological knowledge sources. It is built on top of Biomine, a system which integrates cross-references from several biological databases into a large heterogeneous probabilistic network. Biomine Explorer offers user-friendly interfaces for search, visualization, exploration and manipulation as well as public and private storage of discovered subnetworks with permanent links suitable for inclusion into scientific publications. A JSON-based web API for network search queries is also available for advanced users. Availability and implementation Biomine Explorer is implemented as a web application, which is publicly available at https://biomine.ijs.si. Registration is not required but registered users can benefit from additional features such as private network repositories.

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1824
Author(s):  
Pedro Albuquerque ◽  
João Pedro Machado ◽  
Tanmay Tulsidas Verlekar ◽  
Paulo Lobato Correia ◽  
Luís Ducla Soares

Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s health and recovery. Simple vision-based systems have a considerable potential in this area, as they allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the required computations can be done remotely. State-of-the-art vision-based systems for gait analysis use deep learning strategies, thus requiring a large amount of data for training. However, to the best of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects, simulating five types of gait. This paper presents a new dataset, GAIT-IT, captured from 21 subjects simulating five types of gait, at two severity levels. The dataset is recorded in a professional studio, making the sequences free of background camouflage, variations in illumination and other visual artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters, memory requirements and execution times, while the classification accuracy is on par with the state-of-the-art. Recognizing the importance of remote healthcare, the proposed automatic gait analysis system is integrated with a prototype web application. This prototype is presently hosted in a private network, and after further tests and development it will allow people to upload a video of them walking and execute a web service that classifies their gait. The web application has a user-friendly interface usable by healthcare professionals or by laypersons. The application also makes an association between the identified type of gait and potential gait pathologies that exhibit the identified characteristics.


2019 ◽  
Vol 35 (21) ◽  
pp. 4519-4521 ◽  
Author(s):  
Youssef Darzi ◽  
Yuta Yamate ◽  
Takuji Yamada

Abstract Summary Functional annotations and their hierarchical classification are widely used in omics workflows to build novel insight upon existing biological knowledge. Currently, a plethora of tools is available to explore omics datasets at the level of functional annotations, but there is a lack of feature rich and user-friendly tools that help scientists take advantage of their hierarchical classification for additional and often invaluable insights. Here, we present FuncTree2, a user-friendly web application that turns hierarchical classifications into interactive and highly customizable radial trees, and enables researchers to visualize their data simultaneously on all its levels. FuncTree2 features mapping of data from multiple samples and several navigation features like zooming, panning, re-rooting and collapsing of nodes or levels. Availability and implementation FuncTree2 is freely available at https://bioviz.tokyo/functree2/ as a web application and a REST API. Source code is available on GitHub https://github.com/yamada-lab/functree-ng. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 22 (S2) ◽  
Author(s):  
Daniele D’Agostino ◽  
Pietro Liò ◽  
Marco Aldinucci ◽  
Ivan Merelli

Abstract Background High-throughput sequencing Chromosome Conformation Capture (Hi-C) allows the study of DNA interactions and 3D chromosome folding at the genome-wide scale. Usually, these data are represented as matrices describing the binary contacts among the different chromosome regions. On the other hand, a graph-based representation can be advantageous to describe the complex topology achieved by the DNA in the nucleus of eukaryotic cells. Methods Here we discuss the use of a graph database for storing and analysing data achieved by performing Hi-C experiments. The main issue is the size of the produced data and, working with a graph-based representation, the consequent necessity of adequately managing a large number of edges (contacts) connecting nodes (genes), which represents the sources of information. For this, currently available graph visualisation tools and libraries fall short with Hi-C data. The use of graph databases, instead, supports both the analysis and the visualisation of the spatial pattern present in Hi-C data, in particular for comparing different experiments or for re-mapping omics data in a space-aware context efficiently. In particular, the possibility of describing graphs through statistical indicators and, even more, the capability of correlating them through statistical distributions allows highlighting similarities and differences among different Hi-C experiments, in different cell conditions or different cell types. Results These concepts have been implemented in NeoHiC, an open-source and user-friendly web application for the progressive visualisation and analysis of Hi-C networks based on the use of the Neo4j graph database (version 3.5). Conclusion With the accumulation of more experiments, the tool will provide invaluable support to compare neighbours of genes across experiments and conditions, helping in highlighting changes in functional domains and identifying new co-organised genomic compartments.


2021 ◽  
pp. 193229682098557
Author(s):  
Alysha M. De Livera ◽  
Jonathan E. Shaw ◽  
Neale Cohen ◽  
Anne Reutens ◽  
Agus Salim

Motivation: Continuous glucose monitoring (CGM) systems are an essential part of novel technology in diabetes management and care. CGM studies have become increasingly popular among researchers, healthcare professionals, and people with diabetes due to the large amount of useful information that can be collected using CGM systems. The analysis of the data from these studies for research purposes, however, remains a challenge due to the characteristics and large volume of the data. Results: Currently, there are no publicly available interactive software applications that can perform statistical analyses and visualization of data from CGM studies. With the rapidly increasing popularity of CGM studies, such an application is becoming necessary for anyone who works with these large CGM datasets, in particular for those with little background in programming or statistics. CGMStatsAnalyser is a publicly available, user-friendly, web-based application, which can be used to interactively visualize, summarize, and statistically analyze voluminous and complex CGM datasets together with the subject characteristics with ease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ye Emma Zohner ◽  
Jeffrey S. Morris

Abstract Background The COVID-19 pandemic has caused major health and socio-economic disruptions worldwide. Accurate investigation of emerging data is crucial to inform policy makers as they construct viral mitigation strategies. Complications such as variable testing rates and time lags in counting cases, hospitalizations and deaths make it challenging to accurately track and identify true infectious surges from available data, and requires a multi-modal approach that simultaneously considers testing, incidence, hospitalizations, and deaths. Although many websites and applications report a subset of these data, none of them provide graphical displays capable of comparing different states or countries on all these measures as well as various useful quantities derived from them. Here we introduce a freely available dynamic representation tool, COVID-TRACK, that allows the user to simultaneously assess time trends in these measures and compare various states or countries, equipping them with a tool to investigate the potential effects of the different mitigation strategies and timelines used by various jurisdictions. Findings COVID-TRACK is a Python based web-application that provides a platform for tracking testing, incidence, hospitalizations, and deaths related to COVID-19 along with various derived quantities. Our application makes the comparison across states in the USA and countries in the world easy to explore, with useful transformation options including per capita, log scale, and/or moving averages. We illustrate its use by assessing various viral trends in the USA and Europe. Conclusion The COVID-TRACK web-application is a user-friendly analytical tool to compare data and trends related to the COVID-19 pandemic across areas in the United States and worldwide. Our tracking tool provides a unique platform where trends can be monitored across geographical areas in the coming months to watch how the pandemic waxes and wanes over time at different locations around the USA and the globe.


2016 ◽  
Author(s):  
Stephen G. Gaffney ◽  
Jeffrey P. Townsend

ABSTRACTSummaryPathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects.Availability and ImplementationWeb application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at github.com/sggaffney/pathscore with a GPLv3 [email protected] InformationAdditional documentation can be found at http://pathscore.publichealth.yale.edu/faq.


2020 ◽  
Author(s):  
Stevenn Volant ◽  
Pierre Lechat ◽  
Perrine Woringer ◽  
Laurence Motreff ◽  
Christophe Malabat ◽  
...  

Abstract BackgroundComparing the composition of microbial communities among groups of interest (e.g., patients vs healthy individuals) is a central aspect in microbiome research. It typically involves sequencing, data processing, statistical analysis and graphical representation of the detected signatures. Such an analysis is normally obtained by using a set of different applications that require specific expertise for installation, data processing and in some case, programming skills. ResultsHere, we present SHAMAN, an interactive web application we developed in order to facilitate the use of (i) a bioinformatic workflow for metataxonomic analysis, (ii) a reliable statistical modelling and (iii) to provide among the largest panels of interactive visualizations as compared to the other options that are currently available. SHAMAN is specifically designed for non-expert users who may benefit from using an integrated version of the different analytic steps underlying a proper metagenomic analysis. The application is freely accessible at http://shaman.pasteur.fr/, and may also work as a standalone application with a Docker container (aghozlane/shaman), conda and R. The source code is written in R and is available at https://github.com/aghozlane/shaman. Using two datasets (a mock community sequencing and published 16S rRNA metagenomic data), we illustrate the strengths of SHAMAN in quickly performing a complete metataxonomic analysis. ConclusionsWe aim with SHAMAN to provide the scientific community with a platform that simplifies reproducible quantitative analysis of metagenomic data.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3721-3724

With the invention of deep learning, there is a good progress in image classification. But automatic generation of captions for images is still a challenging problem and is in the initial stages of artificial intelligence research. Automatic description of images has applications in social networking and will be useful to visually impaired persons. This paper concentrates on designing a user-friendly web application framework which can predict the caption of an image using deep learning techniques. The verbs and objects present in the caption are used for forming the emoji and for predicting the major color of the image


Author(s):  
Muhammad Ahmad Amin ◽  
Saqib Saeed

Amongst open-source e-learning systems, WebGoat, a progression of OWASP, provides some room for teaching the penetration testing techniques. Yet, it is a major concern of its learners as to whether the WebGoat interface is user-friendly enough to help them acquaint themselves of the desired Web application security knowledge. This chapter encompasses a heuristic evaluation of this application to acquire the usability of contemporary version of WebGoat. In this context of evaluation, the in-house formal lab testing of WebGoat was conducted by the authors. The results highlight some important issues and usability problems that frequently pop-up in the contemporary version. The research results would be pivotal to the embedding of an operational as well as user-friendly interface for its future version.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document