scholarly journals MAP3K4 Kinase Activity Dependent Control of Mouse Gonadal Sex Determination†

Author(s):  
Noha A M Shendy ◽  
Amber L Broadhurst ◽  
Kristin Shoemaker ◽  
Robert Read ◽  
Amy N Abell

Abstract Sex determination requires the commitment of bipotential gonads to either a testis or ovarian fate. Gene deletion of the kinase Map3k4 results in gonadal sex reversal in XY mice, and transgenic re-expression of Map3k4 rescues the sex reversal phenotype. Map3k4 encodes a large, multi-functional protein possessing a kinase domain and several, additional protein-protein interaction domains. Although MAP3K4 plays a critical role in male gonadal sex determination, it is unknown if the kinase activity of MAP3K4 is required. Here, we use mice expressing full-length, kinase-inactive MAP3K4 from the endogenous Map3k4 locus to examine the requirement of MAP3K4 kinase activity in sex determination. Although homozygous kinase-inactivation of MAP3K4 (Map3k4KI/KI) is lethal, a small fraction survive to adulthood. We show Map3k4KI/KI adults exhibit a 4:1 female-biased sex ratio. Many adult Map3k4KI/KI phenotypic females have a Y chromosome. XY Map3k4KI/KI adults with sex reversal display female mating behavior, but do not give rise to offspring. Reproductive organs are overtly female, but there is a broad spectrum of ovarian phenotypes, including ovarian absence, primitive ovaries, reduced ovarian size, and ovaries having follicles in all stages of development. Further, XY Map3k4KI/KI adults are smaller than either male or female Map3k4WT/WT mice. Examination of the critical stage of gonadal sex determination at E11.5 shows that loss of MAP3K4 kinase activity results in the loss of Sry expression in XY Map3k4KI/KI embryos, indicating embryonic male gonadal sex reversal. Together, these findings demonstrate the essential role for kinase activity of MAP3K4 in male gonadal sex determination.

2001 ◽  
Vol 21 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Tatsushi Wakayama ◽  
Tae Kondo ◽  
Seiko Ando ◽  
Kunihiro Matsumoto ◽  
Katsunori Sugimoto

ABSTRACT In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Δ mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Δ cells, as in mec1Δcells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of thepie1Δ mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Δ mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.


2021 ◽  
Author(s):  
Onisha Patel ◽  
Michael Roy ◽  
Ashleigh Kropp ◽  
Weiwen Dai ◽  
Isabelle Lucet

Abstract Doublecortin-like kinase 1 (DCLK1) is a bi-functional protein classified as a Microtubule-Associated Protein (MAP) and as a serine/threonine kinase that plays a critical role in regulating microtubule assembly. This understudied kinase is upregulated or mutated in a wide range of cancers. Knockdown studies have shown that DCLK1 is functionally important for tumour growth. However, the presence of tissue and development specific spliced DCLK1 isoforms and the lack of systematic evaluation of their biological function have challenged the development of effective strategies to understand the role of DCLK1 in oncogenesis. Recently, DCLK1-IN-1 was reported as a potent and selective DCLK1 kinase inhibitor, a powerful new tool to dissect DCLK1 biological functions. Here, we report the crystal structures of DCLK1 kinase domain in complex with two DCLK1-IN-1 precursors and DCLK-IN-1. Combined, our structural data analysis illuminates and rationalises the structure-activity relationship that informed development of DCLK1-IN-1 and provides the basis for DCLK1-IN-1 increased selectivity. We show that DCLK1-IN-1 induces a drastic conformational change of the N-lobe, which uncovered a new allosteric site. In addition, we demonstrate that DCLK1-IN-1 binds DCLK1 long isoforms with high affinity but does not prevent DCLK1 MAP function. Together, our work outlines the need for in-depth studies to rationally design of isoform-specific modulators and provides an invaluable structural platform to further the design of selective DCLK1 therapeutic agents.


1998 ◽  
Vol 95 (16) ◽  
pp. 9301-9306 ◽  
Author(s):  
Kyung S. Lee ◽  
Tallessyn Z. Grenfell ◽  
Frederic R. Yarm ◽  
Raymond L. Erikson

Members of the polo subfamily of protein kinases play pivotal roles in cell proliferation. In addition to the kinase domain, polo kinases have a strikingly conserved sequence in the noncatalytic domain, termed the polo-box. The function of the polo-box is currently undefined. The mammalian polo-like kinase Plk is a functional homologue ofSaccharomyces cerevisiaeCdc5. Here, we show that Plk localizes at the spindle poles and cytokinetic neck filaments. Without impairing kinase activity, a conservative mutation in the polo-box disrupts the capacity of Plk to complement the defect associated with acdc5–1temperature-sensitive mutation and to localize to these subcellular structures. Our data provide evidence that the polo-box plays a critical role in Plk function, likely by directing its subcellular localization.


Endocrinology ◽  
2015 ◽  
Vol 156 (5) ◽  
pp. 1887-1899 ◽  
Author(s):  
Satomi Kohno ◽  
Melissa C. Bernhard ◽  
Yoshinao Katsu ◽  
Jianguo Zhu ◽  
Teresa A. Bryan ◽  
...  

All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4′,4′’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.


2021 ◽  
Author(s):  
Scott D Hansen ◽  
Albert A Lee ◽  
Jay T Groves

The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2 containing membranes and dimerize in a protein density dependent manner. Although dispensable for PI(4,5)P2 binding and lipid kinase activity, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane bound kinase.


2001 ◽  
Vol 357 (2) ◽  
pp. 513-520 ◽  
Author(s):  
Zheng ZHU ◽  
Song LING ◽  
Qi-Heng YANG ◽  
Lin LI

The bisphosphatase activity of the hepatic bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is repressed by its kinase domain, and regulated by cAMP-dependent protein kinase (PKA)-catalysed phosphorylation. In the present study, the mechanism by which the bisphosphatase activity is repressed by the kinase domain and regulated by phosphorylation was investigated. We found that truncation of the C-terminus of the enzyme by 25, but not 20, amino acids dramatically enhanced the catalytic rate of the bisphosphatase, abrogated the inhibition by the kinase domain, and eliminated the effect of PKA-mediated phosphorylation on activity. In addition, mutation of His444-Arg-Glu-Arg to Ala-Ala-Glu-Ala had similar effects as the deletion. Moreover, the mutations also significantly affected the phosphorylation-mediated regulation of the kinase activity of the enzyme. Furthermore, the mutations altered the pH-dependence of the bisphosphatase, and the mutant bisphosphatases were more sensitive to modification by diethyl pyrocarbonate and guanidine-induced inactivation than the wild-type enzyme. Taken together, these results demonstrate that the sequence His444-Arg-Glu-Arg plays a critical role in repression of the bisphosphatase activity by both the N-terminal kinase domain and the C-terminal tail itself. These results also explain the activation of the bisphosphatase activity by PKA-catalysed phosphorylation, by suggesting that phosphorylation may relieve the inhibitory effect of the kinase domain that is mediated by the three basic residues in this sequence.


1997 ◽  
Vol 17 (5) ◽  
pp. 2497-2501 ◽  
Author(s):  
J Feng ◽  
B A Witthuhn ◽  
T Matsuda ◽  
F Kohlhuber ◽  
I M Kerr ◽  
...  

The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009194
Author(s):  
Kai Chen ◽  
Ye Yu ◽  
Dehong Yang ◽  
Xu Yang ◽  
Linmeng Tang ◽  
...  

Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori.


2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


Sign in / Sign up

Export Citation Format

Share Document