Association of polymorphisms in MALAT1 with the risk of endometriosis in Southern Chinese women

2019 ◽  
Vol 102 (4) ◽  
pp. 943-949
Author(s):  
Guange Chen ◽  
Mingyao Zhang ◽  
Zongwen Liang ◽  
Sailing Chen ◽  
Feng Chen ◽  
...  

Abstract Endometriosis is a common estrogen-dependent inflammatory disease characterized by the presence of endometrial-like tissue outside the uterine cavity, which causes infertility and pelvic pain. Polymorphisms in MALAT1 have been demonstrated to play crucial roles in many diseases. However, the roles of MALAT1 polymorphisms in the etiology of endometriosis have not been well documented. We genotyped three MALAT1 polymorphisms in 555 endometriosis patients and 535 female control participants using quantitative polymerase chain reaction with TaqMan probes. To estimate the associations between MALAT1 polymorphisms and endometriosis risk, an unconditional logistic regression model was conducted to calculate an odds ratio (OR) and the 95% confidence interval (CI), adjusting for age, abortion history, number of deliveries, Body Mass Index (BMI), and The International Federation of Gynecology and Obstetrics (FIGO) stage. We found that the MALAT1 rs591291 C > T polymorphism significantly enhanced endometriosis risk (heterogeneous: adjusted OR = 1.36, 95% CI = 1.00–1.85, P = 0.050; homogenous: adjusted OR = 1.55, 95% CI = 1.03–2.33, P = 0.037; dominant: adjusted OR = 1.41, 95% CI = 1.05–1.88, P = 0.021). In stratification analyses, these associations were more predominant in the patients younger than 35 years old, with a relatively high number of deliveries and with a BMI between 25 and 29.9. Compared with wild-type CCG haplotype carriers, individuals with TCC haplotypes had a higher risk of developing endometriosis. The MALAT1 rs591291 C > T polymorphism was associated with a significant increase in endometriosis risk.

2001 ◽  
Vol 124 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Lai-Fan Fung ◽  
Nathalie Wong ◽  
Nelson Tang ◽  
Alexander Lau ◽  
Vanesse Wong ◽  
...  

2019 ◽  
Vol 25 (4) ◽  
pp. 447-455 ◽  
Author(s):  
Weihua Mai ◽  
Yixian Sun ◽  
Xingwei Liu ◽  
Daojian Lin ◽  
Dongqing Lu

2019 ◽  
Vol 71 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Hans de Graaf ◽  
Muktar Ibrahim ◽  
Alison R Hill ◽  
Diane Gbesemete ◽  
Andrew T Vaughan ◽  
...  

Abstract Background Bordetella pertussis is among the leading causes of vaccine-preventable deaths and morbidity globally. Human asymptomatic carriage as a reservoir for community transmission of infections might be a target of future vaccine strategies, but has not been demonstrated. Our objective was to demonstrate that asymptomatic nasopharyngeal carriage of Bordetella pertussis is inducible in humans and to define the microbiological and immunological features of presymptomatic infection. Methods Healthy subjects aged 18–45 years with an antipertussis toxin immunoglobin G (IgG) concentration of <20 international units/ml were inoculated intranasally with nonattenuated, wild-type Bordetella pertussis strain B1917. Safety, colonization, and shedding were monitored over 17 days in an inpatient facility. Colonization was assessed by culture and quantitative polymerase chain reaction. Azithromycin was administered from Day 14. The inoculum dose was escalated, aiming to colonize at least 70% of participants. Immunological responses were measured. Results There were 34 participants challenged, in groups of 4 or 5. The dose was gradually escalated from 103 colony-forming units (0% colonized) to 105 colony-forming units (80% colonized). Minor symptoms were reported in a minority of participants. Azithromycin eradicated colonization in 48 hours in 88% of colonized individuals. Antipertussis toxin IgG seroconversion occurred in 9 out of 19 colonized participants and in none of the participants who were not colonized. Nasal wash was a more sensitive method to detect colonization than pernasal swabs. No shedding of Bordetella pertussis was detected in systematically collected environmental samples. Conclusions Bordetella pertussis colonization can be deliberately induced and leads to a systemic immune response without causing pertussis symptoms. Clinical Trials Registration NCT03751514.


2020 ◽  
Vol 21 (23) ◽  
pp. 9196
Author(s):  
Chang Ho Kang ◽  
Joung Hun Park ◽  
Eun Seon Lee ◽  
Seol Ki Paeng ◽  
Ho Byoung Chae ◽  
...  

In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.


Sign in / Sign up

Export Citation Format

Share Document