scholarly journals Hierarchy of Connectivity–Function Relationship of the Human Cortex Revealed through Predicting Activity across Functional Domains

2020 ◽  
Vol 30 (8) ◽  
pp. 4607-4616
Author(s):  
Dongya Wu ◽  
Lingzhong Fan ◽  
Ming Song ◽  
Haiyan Wang ◽  
Congying Chu ◽  
...  

Abstract Many studies showed that anatomical connectivity supports both anatomical and functional hierarchies that span across the primary and association cortices in the cerebral cortex. Even though a structure–function relationship has been indicated to uncouple in the association cortex, it is still unknown whether anatomical connectivity can predict functional activations to the same degree throughout the cortex, and it remains unclear whether a hierarchy of this connectivity–function relationship (CFR) exists across the human cortex. We first addressed whether anatomical connectivity could be used to predict functional activations across different functional domains using multilinear regression models. Then, we characterized the CFR by predicting activity from anatomical connectivity throughout the cortex. We found that there is a hierarchy of CFR between sensory–motor and association cortices. Moreover, this CFR hierarchy was correlated to the functional and anatomical hierarchies, respectively, reflected in functional flexibility and the myelin map. Our results suggest a shared hierarchical mechanism in the cortex, a finding which provides important insights into the anatomical and functional organizations of the human brain.

2019 ◽  
Author(s):  
Dongya Wu ◽  
Lingzhong Fan ◽  
Ming Song ◽  
Haiyan Wang ◽  
Congying Chu ◽  
...  

AbstractMany studies showed that anatomical connectivity supports both anatomical and functional hierarchies that span across the primary and association cortices in the cerebral cortex. However, it remains unclear whether a hierarchy of connectivity-function relationship (CFR) exists across the human cortex as well as how to characterize the hierarchy of this CFR if it exists. We first addressed whether anatomical connectivity could be used to predict functional activations across different functional domains using multilinear regression models. Then we characterized the CFR by predicting activity from anatomical connectivity throughout the cortex. We found that there is a hierarchy of CFR across the human cortex. Moreover, this CFR hierarchy was correlated to the functional and anatomical hierarchy reflected in functional flexibility, functional variability, and the myelin map. Our results suggest a shared hierarchical mechanism in the cortex, a finding which provides important insights into the anatomical and functional organization of the human brain.


2018 ◽  
Author(s):  
Dongya Wu ◽  
Lingzhong Fan ◽  
Tianzi Jiang

AbstractMore and more studies had used connectivity profiles to predict functions of the brain. However, whether anatomical connectivity can predict functions consistently with functional connectivity in various functional domains and whether the connectivity-function relationship is universal across the whole cortex are unknown. Using a linear model, we discovered that anatomical connectivity was comparative to functional connectivity in explaining the variance of functions in most cortical regions, with the exception that anatomical connectivity had poor explaining abilities in brain areas which had high individual task variations. In addition, anatomical connectivity were not that good at capturing individual functional differences and had less inter-subject variation than functional connectivity, however anatomical connectivity could be regarded as more stable in the perspective of parcellation. The current results provided the first comprehensive picture of the relationships between functions and connectivity in the whole human cortex at a fine-grained brain atlas.


Author(s):  
M. G. Monika Bai ◽  
H. Vignesh Babu ◽  
V. Lakshmi ◽  
M. Rajeswara Rao

Fluorescent porous organic polymers are a unique class of materials owing to their strong aggregation induced emission, long range exciton migration and permanent porosity, thus envisioned to possess a wide range of applications (sensing, OLEDs).


2017 ◽  
Vol 3 (8) ◽  
pp. 1700181 ◽  
Author(s):  
Nitin Saxena ◽  
Mihael Čorić ◽  
Anton Greppmair ◽  
Jan Wernecke ◽  
Mika Pflüger ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu Sun ◽  
Alan Perez-Rathke ◽  
Daniel M. Czajkowsky ◽  
Zhifeng Shao ◽  
Jie Liang

AbstractSingle-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5–6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.


Biochemistry ◽  
1982 ◽  
Vol 21 (11) ◽  
pp. 2592-2600 ◽  
Author(s):  
Yee Hsiung Chen ◽  
Jang Chyi Tai ◽  
Wan Jen Huang ◽  
Ming Zong Lai ◽  
Mien Chie Hung ◽  
...  

2014 ◽  
Vol 118 (19) ◽  
pp. 5059-5074 ◽  
Author(s):  
Kalpana Pandey ◽  
Reema R. Dhoke ◽  
Yogendra Singh Rathore ◽  
Samir K. Nath ◽  
Neha Verma ◽  
...  

1987 ◽  
Vol 16 (3-4) ◽  
pp. 219-226 ◽  
Author(s):  
Walter Fiers ◽  
Rudi Beyaert ◽  
Peter Brouckaert ◽  
Bart Everaerdt ◽  
Guy Haegeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document