Structure–property–function relationship of fluorescent conjugated microporous polymers

Author(s):  
M. G. Monika Bai ◽  
H. Vignesh Babu ◽  
V. Lakshmi ◽  
M. Rajeswara Rao

Fluorescent porous organic polymers are a unique class of materials owing to their strong aggregation induced emission, long range exciton migration and permanent porosity, thus envisioned to possess a wide range of applications (sensing, OLEDs).

2021 ◽  
Author(s):  
Yanpei Song ◽  
Pui Ching Lan ◽  
Kyle Martin ◽  
Shengqian Ma

Conjugated microporous polymers (CMPs) are an emerging class of porous organic polymers that combine -conjugated skeletons with permanent micropores. Since their first report in 2007, the enormous exploration of linkage...


2014 ◽  
Vol 43 (18) ◽  
pp. 6570-6597 ◽  
Author(s):  
Kai Li ◽  
Bin Liu

In this Critical Review, we summarize the latest advances in the development of polymer encapsulated nanoparticles based on conjugated polymers and fluorogens with aggregation induced emission (AIE) characteristics, elucidate the importance of matrix selection and structure–property relationship of these nanoparticles and discuss their applications in fluorescence and photoacoustic imaging.


2007 ◽  
Vol 282 (49) ◽  
pp. 35530-35535 ◽  
Author(s):  
Christopher J. Millard ◽  
Ian R. Ellis ◽  
Andrew R. Pickford ◽  
Ana M. Schor ◽  
Seth L. Schor ◽  
...  

The motogenic activity of migration-stimulating factor, a truncated isoform of fibronectin (FN), has been attributed to the IGD motifs present in its FN type 1 modules. The structure-function relationship of various recombinant IGD-containing FN fragments is now investigated. Their structure is assessed by solution state NMR and their motogenic ability tested on fibroblasts. Even conservative mutations in the IGD motif are inactive or have severely reduced potency, while the structure remains essentially the same. A fragment with two IGD motifs is 100 times more active than a fragment with one and up to 106 times more than synthetic tetrapeptides. The wide range of potency in different contexts is discussed in terms of cryptic FN sites and cooperativity. These results give new insight into the stimulation of fibroblast migration by IGD motifs in FN.


2021 ◽  
Author(s):  
Thanh Huyen Phan ◽  
Shiva Kamini Divakarla ◽  
Jia Hao Yeo ◽  
Qingyu Lei ◽  
Priyanka Tharkar ◽  
...  

AbstractExtracellular vesicles (EVs) have been lauded as next generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass-produce EVs, i.e. to isolate, purify and characterise them effectively. Technical limitations in comprehensive characterisation of EVs leads to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were shown to correlate well with the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterisation approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.


2015 ◽  
Vol 6 (8) ◽  
pp. 4690-4697 ◽  
Author(s):  
Qiuhua Zhu ◽  
Yilin Zhang ◽  
Han Nie ◽  
Zujin Zhao ◽  
Shuwen Liu ◽  
...  

Racemic low-conjugated non-emissive THPs 1–3 can form highly emissive RS- and RR/SS-packing polymorphs with mixed through-bond and through-space conjugation.


2005 ◽  
Vol 284-286 ◽  
pp. 349-352 ◽  
Author(s):  
J.P. Gittings ◽  
I.G. Turner ◽  
A.W. Miles

Calcium phosphate (CaP) ceramics possessing an interconnecting porosity network in the appropriate size range for vascularisation offer the possibility of providing a structural matrix for replacement of diseased or damaged bone. Such bioceramics must possess sufficient mechanical strength to avoid failure whilst offering a bioactive surface for bone regeneration. The objective of the current study was to produce a hydroxyapatite/tricalcium phosphate (HA/TCP) bioceramic that imitated the orientated trabecular structure found in cancellous bone. The structure-property relationship of these bioceramics was then analysed. It was hypothesised that the mechanical properties would be linked to the shape of the pore structure due to the orientation of the open porous scaffolds (OPS) produced. OPS bioceramics possessed an interconnected macroporosity network of 40-70% by volume with bending strengths of 0.30MPa ± 0.01MPa and apparent densities of 0.35g/cm3 ± 0.05g/cm3. Typically, pore sizes in the range of 150-300µm were produced. The fabrication of CaP OPS resulted in a wide range of macroporosity in the correct size range for osseointegration to occur. Elongating the pore structure did not affect the total porosity of the bioceramics. Strengths were low due to microcrack formation on sintering and not due to the shape of the pores present in the scaffold as initially hypothesised.


2013 ◽  
Vol 46 (19) ◽  
pp. 7696-7704 ◽  
Author(s):  
Martijn A. Zwijnenburg ◽  
Ge Cheng ◽  
Tom O. McDonald ◽  
Kim. E. Jelfs ◽  
Jia-Xing Jiang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Céline Huynen ◽  
Patrice Filée ◽  
André Matagne ◽  
Moreno Galleni ◽  
Mireille Dumoulin

Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class Aβ-lactamases as versatile scaffolds to design hybrid enzymes (referred to asβ-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.


2020 ◽  
Vol 50 (1) ◽  
pp. 521-549 ◽  
Author(s):  
Rui-Yang Wang ◽  
Moon Jeong Park

Recent advances in the synthesis of block copolymers have enabled the creation of smart and functional designer polymers possessing specific intermolecular interactions. The long-range nature of these interactions strongly affects the molecular packings and microstructures of such polymers, which are intimately related to their properties. In addition to various applications, their unique physicochemical properties, distinguished from conventional block copolymers, are attracting significant attention from polymer and materials scientists. In this review, we describe the current understanding of the structure-property relationship of block copolymers having long-range interactions and suggest possible directions of technological development. We particularly focus on how specific interactions, such as Coulombic, π-π stacking, hydrogen-bonding, and metal/ion-dipole interactions, affect the molecular arrangements of block copolymers on the nanometer and molecular scales. Such information could lead to block copolymers with more advanced functions for future nanotechnologies.


Sign in / Sign up

Export Citation Format

Share Document