scholarly journals Pupil Dilation and the Slow Wave ERP Reflect Surprise about Choice Outcome Resulting from Intrinsic Variability in Decision Confidence

2021 ◽  
Author(s):  
Jan Willem de Gee ◽  
Camile M C Correa ◽  
Matthew Weaver ◽  
Tobias H Donner ◽  
Simon van Gaal

Abstract Central to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain’s arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the positive slow wave component of event-related potentials reflect rapid changes in the arousal level of the brain. Here, we ask whether and how these variables may reflect surprise: the mismatch between one’s expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision task in the face of uncertainty both physiological markers of phasic arousal reflect surprise. We further show that pupil responses and slow wave event-related potential are unrelated to each other and that prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.

Author(s):  
Jan Willem de Gee ◽  
Camile M.C. Correa ◽  
Matthew Weaver ◽  
Tobias H. Donner ◽  
Simon van Gaal

AbstractCentral to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain’s arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the P3 component of event-related potentials reflect rapid changes in the arousal level of the brain. Here we ask whether and how these variables may reflect “subjective surprise”: the mismatch between one’s expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision-task in the face of uncertainty both physiological markers of phasic arousal reflect subjective surprise. We further show that pupil responses and P3 are unrelated to each other, and that subjective prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243929
Author(s):  
Siyu Jiang ◽  
Ming Peng ◽  
Xiaohui Wang

It has been widely accepted that moral violations that involve impurity (such as spitting in public) induce the emotion of disgust, but there has been a debate about whether moral violations that do not involve impurity (such as swearing in public) also induce the same emotion. The answer to this question may have implication for understanding where morality comes from and how people make moral judgments. This study aimed to compared the neural mechanisms underlying two kinds of moral violation by using an affective priming task to test the effect of sentences depicting moral violation behaviors with and without physical impurity on subsequent detection of disgusted faces in a visual search task. After reading each sentence, participants completed the face search task. Behavioral and electrophysiological (event-related potential, or ERP) indices of affective priming (P2, N400, LPP) and attention allocation (N2pc) were analyzed. Results of behavioral data and ERP data showed that moral violations both with and without impurity promoted the detection of disgusted faces (RT, N2pc); moral violations without impurity impeded the detection of neutral faces (N400). No priming effect was found on P2 and LPP. The results suggest both types of moral violation influenced the processing of disgusted faces and neutral faces, but the neural activity with temporal characteristics was different.


2007 ◽  
Vol 19 (8) ◽  
pp. 1338-1353 ◽  
Author(s):  
O. Hauk ◽  
K. Patterson ◽  
A. Woollams ◽  
E. Cooper-Pye ◽  
F. Pulvermüller ◽  
...  

Using an object decision task, event-related potentials (ERPs), and minimum norm current source estimates, we investigated early spatiotemporal aspects of cortical activation elicited by line drawings that were manipulated on two dimensions: authenticity and typicality. Authentic objects were those that match real-world experience, whereas nonauthentic objects were “doctored” by deletion or addition of features (e.g., a camel with its hump removed, a hammer with two handles). The main manipulation of interest for both authentic and nonauthentic objects was the degree of typicality in the object's structure: typical items are composed of parts that have tended to co-occur across many different objects in the perceiver's experience. The ERP pattern revealed a significant typicality effect at 116 msec after stimulus onset. Both atypical authentic objects (e.g., a camel with its hump) and atypical nonauthentic objects (e.g., a jackal with a hump) elicited stronger brain activation than did objects with typical structure. A significant effect of authenticity was observed at 480 msec, with stronger activation for the nonauthentic objects. The factors of typicality and authenticity interacted at 160 and 330 msec. The most prominent source of the typicality effect was the bilateral occipitotemporal cortex, whereas the interaction and the authenticity effects were mainly observed in the more anterior bilateral temporal cortex. These findings support the hypothesis that within the first few hundred milliseconds after stimulus presentation onset, visual-form-related perceptual and conceptual processes represent distinct but interacting stages in object recognition.


2009 ◽  
Vol 21 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Manuel Carreiras ◽  
Margaret Gillon-Dowens ◽  
Marta Vergara ◽  
Manuel Perea

To investigate the neural bases of consonant and vowel processing, event-related potentials (ERPs) were recorded while participants read words and pseudowords in a lexical decision task. The stimuli were displayed in three different conditions: (i) simultaneous presentation of all letters (baseline condition); (ii) presentation of all letters, except that two internal consonants were delayed for 50 msec (consonants-delayed condition); and (iii) presentation of all letters, except that two internal vowels were delayed for 50 msec (vowels-delayed condition). The behavioral results showed that, for words, response times in the consonants-delayed condition were longer than in the vowels-delayed condition, which, in turn, were longer than in the baseline condition. The ERPs showed that, starting as early as 150 msec, words in the consonants-delayed condition produced a larger negativity than words in vowels-delayed condition. In addition, there were peak latency differences and amplitude differences in the P150, N250, P325, and N400 components between the baseline and the two letter-delayed conditions. We examine the implications of these findings for models of visual-word recognition and reading.


2002 ◽  
Vol 13 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Stefan R. Schweinberger ◽  
Thomas Klos ◽  
Werner Sommer

Abstract: We recorded reaction times (RTs) and event-related potentials (ERPs) in patients with unilateral lesions during a memory search task. Participants memorized faces or abstract words, which were then recognized among new ones. The RT deficit found in patients with left brain damage (LBD) for words increased with memory set size, suggesting that their problem relates to memory search. In contrast, the RT deficit found in patients with RBD for faces was apparently related to perceptual encoding, a conclusion also supported by their reduced P100 ERP component. A late slow wave (720-1720 ms) was enhanced in patients, particularly to words in patients with LBD, and to faces in patients with RBD. Thus, the slow wave was largest in the conditions with most pronounced performance deficits, suggesting that it reflects deficit-related resource recruitment.


2006 ◽  
Vol 20 (3) ◽  
pp. 195-211 ◽  
Author(s):  
Michael Wagner ◽  
Lioba Baving ◽  
Patrick Berg ◽  
Rudolf Cohen ◽  
Brigitte Rockstroh

The processing of attended and nonattended stimuli in schizophrenic patients was examined with event-related potentials (ERPs) in a lexical decision task. In positive semantic and repetition priming the N400 amplitude did not differ between a group of 17 medicated schizophrenic patients and a group of 20 matched healthy controls. However, negative priming affected the N400 only in controls. Reaction time effects were dissociated from these ERP effects, with patients showing stronger positive priming than controls but identical negative priming. The semantic processes related to the N400 appear to be intact in schizophrenic patients, but patients seem to incorporate less context information (about the nonattended prime) in their episodic memory traces. A stronger increase of the posterior late positive complex in parallel to the stronger positive priming in schizophrenic patients may reflect relatively stronger automatic memory retrieval processes in patients.


2019 ◽  
Vol 47 (7) ◽  
pp. 1-9
Author(s):  
Li Jin ◽  
Xu Li ◽  
Jiamei Lu ◽  
Nianqu Chen ◽  
Lin Cheng ◽  
...  

We investigated emotional conflict in an educational context with an emotional body–word Stroop paradigm, examining whether the N450 (a late fronto-central phasic negative event-related potential signature) and slow potential (SP) effects could be evoked in trainee teachers. The N450 effect is characterized by topography and negative polarity of an incongruent minus congruent difference potential, and the SP effect has positive polarity (incongruent minus congruent difference potential). Positive and negative body language examples were obtained from pupils in an actual school context, and emotional words were selected. Compound stimuli were presented, each comprising a congruent or incongruent word displayed across a body image. Event-related potentials were recorded while participants judged body expression valence. Reaction times were longer and accuracies were lower for the incongruent compared to the congruent condition. The N450 component amplitude in the incongruent condition was more negative than in the congruent condition. Results showed a behavioral interference effect and an N450 effect for trainee teachers in this context, thus indicating that the body–word task was efficient in assessing emotional conflict in an educational context, and trainee teachers' perception of body expressions of students could be influenced by emotional signals. The findings further the understanding of emotional conflict in an educational context.


2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Alexander Rokos ◽  
Richard Mah ◽  
Rober Boshra ◽  
Amabilis Harrison ◽  
Tsee Leng Choy ◽  
...  

A consistent limitation when designing event-related potential paradigms and interpreting results is a lack of consideration of the multivariate factors that affect their elicitation and detection in behaviorally unresponsive individuals. This paper provides a retrospective commentary on three factors that influence the presence and morphology of long-latency event-related potentials—the P3b and N400. We analyze event-related potentials derived from electroencephalographic (EEG) data collected from small groups of healthy youth and healthy elderly to illustrate the effect of paradigm strength and subject age; we analyze ERPs collected from an individual with severe traumatic brain injury to illustrate the effect of stimulus presentation speed. Based on these critical factors, we support that: (1) the strongest paradigms should be used to elicit event-related potentials in unresponsive populations; (2) interpretation of event-related potential results should account for participant age; and (3) speed of stimulus presentation should be slower in unresponsive individuals. The application of these practices when eliciting and recording event-related potentials in unresponsive individuals will help to minimize result interpretation ambiguity, increase confidence in conclusions, and advance the understanding of the relationship between long-latency event-related potentials and states of consciousness.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 304
Author(s):  
Kelsey Cnudde ◽  
Sophia van Hees ◽  
Sage Brown ◽  
Gwen van der Wijk ◽  
Penny M. Pexman ◽  
...  

Visual word recognition is a relatively effortless process, but recent research suggests the system involved is malleable, with evidence of increases in behavioural efficiency after prolonged lexical decision task (LDT) performance. However, the extent of neural changes has yet to be characterized in this context. The neural changes that occur could be related to a shift from initially effortful performance that is supported by control-related processing, to efficient task performance that is supported by domain-specific processing. To investigate this, we replicated the British Lexicon Project, and had participants complete 16 h of LDT over several days. We recorded electroencephalography (EEG) at three intervals to track neural change during LDT performance and assessed event-related potentials and brain signal complexity. We found that response times decreased during LDT performance, and there was evidence of neural change through N170, P200, N400, and late positive component (LPC) amplitudes across the EEG sessions, which suggested a shift from control-related to domain-specific processing. We also found widespread complexity decreases alongside localized increases, suggesting that processing became more efficient with specific increases in processing flexibility. Together, these findings suggest that neural processing becomes more efficient and optimized to support prolonged LDT performance.


Sign in / Sign up

Export Citation Format

Share Document