scholarly journals Female Mice Avoid Male Odor from the Same Strain via the Vomeronasal System in an Estrogen-Dependent Manner

2015 ◽  
Vol 40 (9) ◽  
pp. 641-648 ◽  
Author(s):  
Saori Yano ◽  
Kentaro Q. Sakamoto ◽  
Yoshiaki Habara
Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4365-4373 ◽  
Author(s):  
Christiane Otto ◽  
Anna Särnefält ◽  
Anne Ljungars ◽  
Siegmund Wolf ◽  
Beate Rohde-Schulz ◽  
...  

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


2020 ◽  
Author(s):  
Geronimo Matteo ◽  
Myriam P Hoyeck ◽  
Hannah L Blair ◽  
Julia Zebarth ◽  
Kayleigh RC Rick ◽  
...  

AbstractObjectiveHuman studies consistently show an association between exposure to persistent organic pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka “dioxin”), and increased diabetes risk. We previously showed that acute high-dose TCDD exposure (20 μg/kg) decreased plasma insulin levels in both male and female mice in vivo; however, effects on glucose homeostasis were sex-dependent. The purpose of this study was to determine whether prolonged exposure to a physiologically relevant dose of TCDD impairs beta cell function and/or glucose homeostasis in a sex-dependent manner in either chow-fed or HFD-fed mice.MethodsMale and female mice were exposed to 20 ng/kg/d TCDD 2x/week for 12 weeks, and simultaneously fed a chow or 45% high-fat diet (HFD). Glucose metabolism was assessed by glucose and insulin tolerance tests throughout the study. Islets were isolated from females at 12 weeks for Tempo-Seq® analysis.ResultsLow-dose TCDD exposure did not lead to adverse metabolic consequences in chow-fed male or female mice, or in HFD-fed males. However, TCDD accelerated the onset of HFD-induced hyperglycemia and impaired glucose-induced plasma insulin levels in female mice. In addition, islet TempO-Seq® analysis showed that TCDD exposure promoted abnormal changes to endocrine and metabolic pathways in HFD-fed females.ConclusionsOur data suggest that TCDD exposure is more deleterious when combined with HFD-feeding in female mice, and that low-dose TCDD exposure increases diabetes susceptibility in females.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1154
Author(s):  
Rasha Alonaizan ◽  
Stuart Woods ◽  
Kerrie E Hargrave ◽  
Craig W. Roberts

Studies indicate that female mice are more susceptible to T. gondii infection, as defined by higher mortality rates in comparison to male mice. However, whether this is due to an inability to control initial parasite multiplication or due to detrimental effects of the immune system has not been determined. Therefore, the following studies were undertaken to determine the influence of sex on early parasite multiplication and the immune response during T. gondii infection and to correlate this with disease outcome. Early parasite replication was studied through applying an in vivo imaging system (IVIS) with luciferase expressing T. gondii. In parallel immunological events were studied by cytometric bead array to quantify key immunological mediators. The results confirmed the previous findings that female mice are more susceptible to acute infection, as determined by higher mortality rates and weight loss compared with males. However, conflicting with expectations, female mice had lower parasite burdens during the acute infection than male mice. Female mice also exhibited significantly increased production of Monocyte Chemoattractant Protein-1 (MCP-1), Interferon (IFN)-γ, and Tumour Necrosis Factor (TNF)-α than male mice. MCP-1 was found to be induced by T. gondii in a dose dependent manner suggesting that the observed increased levels detected in female mice was due to a host-mediated sex difference rather than due to parasite load. However, MCP-1 was not affected by physiological concentration of estrogen or testosterone, indicating that MCP-1 differences observed between the sexes in vivo are due to an as yet unidentified intermediary factor that in turn influences MCP-1 levels. These results suggest that a stronger immune response in female mice compared with male mice enhances their ability to control parasite replication but increases their morbidity and mortality.


2021 ◽  
Author(s):  
Qianyi Yang ◽  
Jameson Hinkle ◽  
Jordan N Reed ◽  
Redouane Aherrahrou ◽  
Zhiwen Xu ◽  
...  

Genome-wide association studies identified single nucleotide polymorphisms on chromosome 7 upstream of KLF14 to be associated with metabolic syndrome traits and increased risk for Type 2 Diabetes (T2D). The associations were more significant in women than in men. The risk allele carriers expressed lower levels of the transcription factor KLF14 in adipose tissues than non-risk allele carriers. To investigate how adipocyte KLF14 regulates metabolic traits in a sex-dependent manner, we characterized high-fat diet fed male and female mice with adipocyte-specific Klf14 deletion or overexpression. Klf14 deletion resulted in increased fat mass in female mice and decreased fat mass in male mice. Female Klf14-deficient mice had overall smaller adipocytes in subcutaneous fat depots but larger adipocytes in parametrial depots, indicating a shift in lipid storage from subcutaneous to visceral fat depots. They had reduced metabolic rates and increased respiratory exchange ratios consistent with increased utilization of carbohydrates as an energy source. Fasting and isoproterenol-induced adipocyte lipolysis was defective in female Klf14-deficient mice and concomitantly adipocyte triglycerides lipase mRNA levels were downregulated. Female Klf14-deficient mice cleared blood triglyceride and NEFA less efficiently than wild type. Finally, adipocyte-specific overexpression of Klf14 resulted in lower total body fat in female but not male mice. Taken together, consistent with human studies, adipocyte KLF14 deficiency in female but not in male mice causes increased adiposity and redistribution of lipid storage from subcutaneous to visceral adipose tissues. Increasing KLF14 abundance in adipocytes of females with obesity and T2D may provide a novel treatment option to alleviate metabolic abnormalities.


2020 ◽  
Vol 318 (3) ◽  
pp. F710-F719 ◽  
Author(s):  
Dingguo Zhang ◽  
Chunhua Jin ◽  
Ijeoma E. Obi ◽  
Megan K. Rhoads ◽  
Reham H. Soliman ◽  
...  

Kidney function follows a 24-h rhythm subject to regulation by circadian genes including the transcription factor Bmal1. A high-salt diet induces a phase shift in Bmal1 expression in the renal inner medulla that is dependent on endothelin type B (ETB) receptors. Furthermore, ETB receptor-mediated natriuresis is sex dependent. Therefore, experiments tested the hypothesis that collecting duct Bmal1 regulates blood pressure in a sex-dependent manner. We generated a mouse model that lacks Bmal1 expression in the collecting duct, where ETB receptor abundance is highest. Male, but not female, collecting duct Bmal1 knockout (CDBmal1KO) mice had significantly lower 24-h mean arterial pressure (MAP) than flox controls (105 ± 2 vs. 112 ± 3 mmHg for male mice and 106 ± 1 vs. 108 ± 1 mmHg for female mice, by telemetry). After 6 days on a high-salt (4% NaCl) diet, MAP remained significantly lower in male CDBmal1KO mice than in male flox control mice (107 ± 2 vs. 113 ± 1 mmHg), with no significant differences between genotypes in female mice (108 ± 2 vs. 109 ± 1 mmHg). ETB receptor blockade for another 6 days increased MAP similarly in both male and female CDBmal1KO and flox control mice. However, MAP remained lower in male CDBmal1KO mice than in male flox control mice (124 ± 2 vs. 130 ± 2 mmHg). No significant differences were observed between female CDBmal1KO and flox mice during ETB blockade (130 ± 2 vs. 127 ± 2 mmHg). There were no significant genotype differences in amplitude or phase of MAP in either sex. These data suggest that collecting duct Bmal1 has no role in circadian MAP but plays an important role in overall blood pressure in male, but not female, mice.


2019 ◽  
Vol 316 (1) ◽  
pp. R50-R58 ◽  
Author(s):  
Lauren G. Douma ◽  
Kristen Solocinski ◽  
Meaghan R. Holzworth ◽  
G. Ryan Crislip ◽  
Sarah H. Masten ◽  
...  

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


2017 ◽  
Vol 152 (5) ◽  
pp. S156
Author(s):  
Filippo Caremoli ◽  
Jennifer Huynh ◽  
Venu Lagishetty ◽  
Jonathan Jacobs ◽  
Jonathan Braun ◽  
...  

2019 ◽  
Vol 110 (6) ◽  
pp. 501-516 ◽  
Author(s):  
Michael J. Kreisman ◽  
Richard B. McCosh ◽  
Katherine Tian ◽  
Christopher I. Song ◽  
Kellie M. Breen

Introduction: Two common responses to stress include elevated circulating glucocorticoids and impaired luteinizing hormone (LH) secretion. We have previously shown that a chronic stress level of corticosterone can impair ovarian cyclicity in intact mice by preventing follicular-phase endocrine events. Objective: This study is aimed at investigating if corticosterone can disrupt LH pulses and whether estradiol is necessary for this inhibition. Methods: Our approach was to measure LH pulses prior to and following the administration of chronic corticosterone or cholesterol in ovariectomized (OVX) mice treated with or without estradiol, as well as assess changes in arcuate kisspeptin (Kiss1) neuronal activation, as determined by co-expression with c-Fos. Results: In OVX mice, a chronic 48 h elevation in corticosterone did not alter the pulsatile pattern of LH. In contrast, corticosterone induced a robust suppression of pulsatile LH secretion in mice treated with estradiol. This suppression represented a decrease in pulse frequency without a change in amplitude. We show that the majority of arcuate Kiss1 neurons contain glucocorticoid receptor, revealing a potential site of corticosterone action. Although arcuate Kiss1 and Tac2 gene expression did not change in response to corticosterone, arcuate Kiss1 neuronal activation was significantly reduced by chronic corticosterone, but only in mice treated with estradiol. Conclusions: Collectively, these data demonstrate that chronic corticosterone inhibits LH pulse frequency and reduces Kiss1 neuronal activation in female mice, both in an estradiol-dependent manner. Our findings support the possibility that enhanced sensitivity to glucocorticoids, due to ovarian steroid milieu, may contribute to reproductive impairment associated with stress or pathophysiologic conditions of elevated glucocorticoids.


2019 ◽  
Vol 87 (5) ◽  
Author(s):  
Andrew L. Garfoot ◽  
Patrick W. Cervantes ◽  
Laura J. Knoll

ABSTRACTThe long-term host effects caused by the protozoan parasiteToxoplasma gondiiare poorly understood. High-throughput RNA sequencing analysis previously determined that the host response in the brain was greater and more complex at 28 days than at 10 days postinfection. Here, we analyzed the host transcriptional profile of age- and sex-matched mice during very early (21 days), early (28 days), mid (3 months), and late (6 months) chronic infection. We found that a majority of the host genes which increase in abundance at day 21 postinfection are still increased at 6 months postinfection for both male and female mice. While most of the differentially expressed genes were similar between sexes, females had far fewer genes that were significantly less abundant, which may have led to the slightly increased cyst burden in males. Transcripts for C-X-C motif chemokine ligand 13 and a C-C motif chemokine receptor 2 (CCR2) were significantly higher in females than in males during infection. AsT. gondiichronic infection and profilin (PRF) confer resistance toListeria monocytogenesinfection in a CCR2-dependent manner, the differences in CCR2 expression led us to retest the protection of PRF in both sexes. Male mice were nearly as effective as female mice at reducing the bacterial burden either with a chronic infection or when treated with PRF. These data show that most of the host genes differentially expressed in response toT. gondiiinfection are similar between males and females. While differences in transcript abundance exist between the sexes, the infection phenotypes tested here did not show significant differences.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A545-A546
Author(s):  
Krist N Hausken ◽  
Sekoni D Noel ◽  
Han Kyeol Kim ◽  
Rona Stephanie Carroll ◽  
Ursula B Kaiser

Abstract Reproduction is regulated by the gonadotropins, LH and FSH, which are synthesized and secreted by pituitary gonadotrophs in response to hypothalamic GnRH in a pulse frequency dependent manner. The gonadotroph decodes GnRH pulsatility via the GnRH receptor (GnRHR), which increases in expression and cell surface density before estrus and is responsible for downstream signaling cascades that differentially favor gonadotropin expression. The gonadotroph Gnrhr promoter contains a tripartite enhancer, including an AP-1 element that is necessary for full GnRH induction of Gnrhr expression in vitro. We previously generated an AP-1 knock-in (KI) mouse model with a single point mutation (C-269T) in the Gnrhr promoter AP-1 binding motif that resulted in an abnormal reproductive phenotype in female mice. Compared to wildtype (WT) littermates, female KI mice had a significant delay in first estrus, disrupted estrous cyclicity, fewer corpora lutea, and smaller litters. Males had no apparent reproductive phenotype. Basal serum gonadotropin levels were similar between WT and KI mice, but gonadectomy induced a significantly lower rise in serum LH levels of KI mice relative to WT mice, concomitant with significantly lower pituitary Gnrhr, Lhb, and Fshb mRNA levels in both sexes. We have now extended the characterization of these mice by measuring LH pulsatility and assessing GnRH induction of LH in vivo and in vitro. The frequency and amplitude of LH pulses over three hours were similar in ovariectomized WT and KI mice; however, KI mice had significantly reduced LH secretion, as measured by area under the curve. Similarly, GnRH treatment induced a diminished LH response in intact KI compared to WT males. In vitro cultures of hemi-pituitaries from gonadectomized WT and KI males were exposed to 0.01 nM GnRH and LH secretion into culture media was measured by ELISA at 0, 0.5, 1, 2, and 4 hours. There was no difference in basal LH secretion between WT and KI pituitaries but GnRH induction of LH was significantly lower in cultures from AP-1 mutant mice, indicating a direct impairment of GnRH action at the level of the pituitary. Taken together, these data indicate that the gonadotroph Gnrhr AP-1 promoter motif is critical for normal reproductive function. Prevention of AP-1 binding to the Gnrhr proximal promoter element decreases GnRH-induced Gnrhr, Lhb, and Fshb levels, impairs GnRH-stimulated LH secretion, and disrupts pubertal development and reproductive cyclicity in female mice.


Sign in / Sign up

Export Citation Format

Share Document