scholarly journals Viral Infections of the Lower Respiratory Tract: Old Viruses, New Viruses, and the Role of Diagnosis

2011 ◽  
Vol 52 (Supplement 4) ◽  
pp. S284-S289 ◽  
Author(s):  
A. T. Pavia
2021 ◽  
Vol 13 (4) ◽  
pp. 5-13
Author(s):  
I. V. Babachenko ◽  
E. A. Kozyrev ◽  
E. V. Sharipova ◽  
E. D. Orlova ◽  
N. S. Tian

The sharp increase in viral pneumonia against the background of the pandemic of the new coronavirus infection SARS-CoV-2 requires more attention to the study of the role of viruses in damage to the lower respiratory tract, including their etiological significance in the development of community-acquired pneumonia. Modern possibilities of laboratory diagnostics make it possible not only to identify and study respiratory viruses, but also to help differentiate active viral infections as a cause of lower respiratory tract disease from virus carriers. The review describes the epidemiological and clinical features of the most relevant or less studied pneumotropic viral infections in children (respiratory syncytial, adenovirus, bocavirus, metapneumovirus), including their role in the etiology of pneumonia in children. Understanding the viral etiology of pneumonia in children will reduce the antibacterial load, which will help to reduce the side effects of chemotherapy and slow the emergence of antimicrobialresistant bacterial strains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niina Haiminen ◽  
Filippo Utro ◽  
Ed Seabolt ◽  
Laxmi Parida

AbstractIn response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Yoon Kang ◽  
Hyojung Kim ◽  
Sungwon Jung ◽  
Sang Min Lee ◽  
Sang Pyo Lee

Abstract Background The microbiota of the lower respiratory tract in patients with non-tuberculous mycobacterial pulmonary disease (NTM-PD) has not been fully evaluated. We explored the role of the lung microbiota in NTM-PD by analyzing protected specimen brushing (PSB) and bronchial washing samples from patients with NTM-PD obtained using a flexible bronchoscope. Results Bronchial washing and PSB samples from the NTM-PD group tended to have fewer OTUs and lower Chao1 richness values compared with those from the control group. In both bronchial washing and PSB samples, beta diversity was significantly lower in the NTM-PD group than in the control group (P = 2.25E-6 and P = 4.13E-4, respectively). Principal component analysis showed that the PSBs and bronchial washings exhibited similar patterns within each group but differed between the two groups. The volcano plots indicated differences in several phyla and genera between the two groups. Conclusions The lower respiratory tract of patients with NTM-PD has a unique microbiota distribution that is low in richness/diversity.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paul T. King

Bronchiectasis is a prevalent respiratory condition characterised by permanent and abnormal dilation of the lung airways (bronchi). There are a large variety of causative factors that have been identified for bronchiectasis; all of these compromise the function of the immune response to fight infection. A triggering factor may lead to the establishment of chronic infection in the lower respiratory tract. The bacteria responsible for the lower respiratory tract infection are usually found as commensals in the upper respiratory tract microbiome. The consequent inflammatory response to infection is largely responsible for the pathology of this condition. Both innate and adaptive immune responses are activated. The literature has highlighted the central role of neutrophils in the pathogenesis of bronchiectasis. Proteases produced in the lung by the inflammatory response damage the airways and lead to the pathological dilation that is the pathognomonic feature of bronchiectasis. The small airways demonstrate infiltration with lymphoid follicles that may contribute to localised small airway obstruction. Despite aggressive treatment, most patients will have persistent disease. Manipulating the immune response in bronchiectasis may potentially have therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document