scholarly journals Reference intervals for blood-based biochemical analytes of southern Beaufort Sea polar bears

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Tricia L Fry ◽  
Kristen R Friedrichs ◽  
Todd C Atwood ◽  
Colleen Duncan ◽  
Kristin Simac ◽  
...  

Abstract Accurate reference intervals (RIs) for commonly measured blood-based analytes are essential for health monitoring programmes. Baseline values for a panel of analytes can be used to monitor physiologic and pathophysiologic processes such as organ function, electrolyte balance and protein catabolism. Our reference population includes 651 serum samples from polar bears (Ursus maritimus) from the southern Beaufort Sea (SB) subpopulation sampled in Alaska, USA, between 1983 and 2016. To establish RI for 13 biochemical analytes, we defined specific criteria for characterizing the reference population and relevant subgroups. To account for differences in seasonal life history characteristics, we determined separate RI for the spring and fall seasons, when prey availability and energetic requirements of bears differ. We established RI for five subgroups in spring based on sex, age class and denning status, and three subgroups in fall based on sex and age class in females only. Alkaline phosphatase activities were twice as high in subadult as in adult polar bears in spring (zmales = 4.08, Pmales < 0.001, zfemales = 3.90, Pfemales < 0.001) and did not differ between seasons. Denning females had significantly higher glucose concentrations than non-denning females (z = 4.94, P < 0.001), possibly reflecting differences in energy expenditure during lactation. A total of 10 of the 13 analytes differed significantly between seasons in either males or females; however, the physiologic importance of these differences may be minimal. Establishing these RIs allows for temporal monitoring of polar bear health in the SB and may prove useful for assessing and monitoring additional polar bear subpopulations in a changing Arctic environment.

ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 14 ◽  
Author(s):  
Ian Stirling ◽  
Evan Richardson ◽  
Gregory W. Thiemann ◽  
Andrew E. Derocher

In April and May 2003 through 2006, unusually rough and rafted sea ice extended for several tens of kilometres offshore in the southeastern Beaufort Sea from about Atkinson Point to the Alaska border. Hunting success of polar bears (Ursus maritimus) seeking seals was low despite extensive searching for prey. It is unknown whether seals were less abundant in comparison to other years or less accessible because they maintained breathing holes below rafted ice rather than snowdrifts, or whether some other factor was involved. However, we found 13 sites where polar bears had clawed holes through rafted ice in attempts to capture ringed seals (Phoca hispida) in 2005 through 2006 and another site during an additional research project in 2007. Ice thickness at the 12 sites that we measured averaged 41 cm. These observations, along with cannibalized and starved polar bears found on the sea ice in the same general area in the springs of 2004 through 2006, suggest that during those years, polar bears in the southern Beaufort Sea were nutritionally stressed. Searches made farther north during the same period and using the same methods produced no similar observations near Banks Island or in Amundsen Gulf. A possible underlying ecological explanation is a decadal-scale downturn in seal populations. But a more likely explanation is major changes in the sea-ice and marine environment resulting from record amounts and duration of open water in the Beaufort and Chukchi seas, possibly influenced by climate warming. Because the underlying causes of observed changes in polar bear body condition and foraging behaviour are unknown, further study is warranted.


2014 ◽  
Vol 41 (4) ◽  
pp. 311 ◽  
Author(s):  
Karyn D. Rode ◽  
Anthony M. Pagano ◽  
Jeffrey F. Bromaghin ◽  
Todd C. Atwood ◽  
George M. Durner ◽  
...  

Context The potential for research methods to affect wildlife is an increasing concern among both scientists and the public. This topic has a particular urgency for polar bears because additional research is needed to monitor and understand population responses to rapid loss of sea ice habitat. Aims This study used data collected from polar bears sampled in the Alaska portion of the southern Beaufort Sea to investigate the potential for capture to adversely affect behaviour and vital rates. We evaluated the extent to which capture, collaring and handling may influence activity and movement days to weeks post-capture, and body mass, body condition, reproduction and survival over 6 months or more. Methods We compared post-capture activity and movement rates, and relationships between prior capture history and body mass, body condition and reproductive success. We also summarised data on capture-related mortality. Key results Individual-based estimates of activity and movement rates reached near-normal levels within 2–3 days and fully normal levels within 5 days post-capture. Models of activity and movement rates among all bears had poor fit, but suggested potential for prolonged, lower-level rate reductions. Repeated captures was not related to negative effects on body condition, reproduction or cub growth or survival. Capture-related mortality was substantially reduced after 1986, when immobilisation drugs were changed, with only 3 mortalities in 2517 captures from 1987–2013. Conclusions Polar bears in the southern Beaufort Sea exhibited the greatest reductions in activity and movement rates 3.5 days post-capture. These shorter-term, post-capture effects do not appear to have translated into any long-term effects on body condition, reproduction, or cub survival. Additionally, collaring had no effect on polar bear recovery rates, body condition, reproduction or cub survival. Implications This study provides empirical evidence that current capture-based research methods do not have long-term implications, and are not contributing to observed changes in body condition, reproduction or survival in the southern Beaufort Sea. Continued refinement of capture protocols, such as the use of low-impact dart rifles and reversible drug combinations, might improve polar bear response to capture and abate short-term reductions in activity and movement post-capture.


2007 ◽  
Vol 85 (5) ◽  
pp. 596-608 ◽  
Author(s):  
T.W. Bentzen ◽  
E.H. Follmann ◽  
S.C. Amstrup ◽  
G.S. York ◽  
M.J. Wooller ◽  
...  

Ringed seals ( Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals ( Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear ( Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales ( Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.


ARCTIC ◽  
2019 ◽  
Vol 72 (4) ◽  
pp. 404-412 ◽  
Author(s):  
Kate M. Lillie ◽  
Eric M. Gese ◽  
Todd C. Atwood ◽  
Mary M. Conner

The availability of a food subsidy has the potential to influence the condition, behavior, fitness, and population dynamics of a species. Since the early 2000s, monitoring efforts along the coast of northern Alaska have indicated a higher proportion of polar bears (<i>Ursus maritimus</i>) of the southern Beaufort Sea (SB) subpopulation coming onshore to feed on subsistence-harvested bowhead whale (<i>Balaena mysticetus</i>) carcasses during the fall and early winter seasons. Concurrently, Indigenous communities annually hunt bowhead whale and deposit the unused remains at localized “bone piles,” creating the potential for human-bear interactions. Our objective was to determine the annual number of polar bears feeding at the bone pile near Kaktovik, Alaska. Using a hair snag surrounding the bone pile, we collected hair samples to identify individual bears via microsatellite genotypes during 2011 – 14. We used capture-mark-recapture data in the POPAN open-population model to estimate the number of bears visiting the bone pile. We estimated that as many as 72 (SE = 9) and 76 (SE = 10) male and female polar bears, respectively, used the bone pile located at Kaktovik, Alaska, in 2012, which represents approximately 16% of the SB polar bear subpopulation. It will be important to monitor the number of bears using the bone pile and subsequent human-bear interactions and conflicts along the northern coast of Alaska, if sea ice continues to recede.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
M P Galicia ◽  
G W Thiemann ◽  
M G Dyck ◽  
S H Ferguson ◽  
I Stirling

Abstract Ecological flexibility of a species reflects its ability to cope with environmental change. Although polar bears (Ursus maritimus) are experiencing changes in foraging opportunities due to sea ice loss, regional prey availability and environmental conditions will influence the rate and severity of these effects. We examined changes in polar bear diet and the influence of sea ice characteristics in Foxe Basin over an 18-year period. We combined previous fatty acid data from bears harvested from 1999 to 2003 (n = 82) with additional data from 2010 to 2018 (n = 397). Polar bear diets were diverse; however, ringed seal (Pusa hispida) was the primary prey throughout the sample period. Prey contribution varied temporally and spatially, and by intrinsic factors, while the frequency of prey in diets varied over time suggesting that diet estimates reflect the variability in available prey. Bowhead whale (Balaena mysticetus), although still a minor dietary component, has more than doubled in frequency of occurrence in diets in recent years in association with increased scavenging opportunities. Higher dietary levels of beluga whale (Delphinapterus leucas) and harbour seal (Phoca vitulina) were linked to later breakup date suggesting heavier ice conditions may promote access to both prey species. The flexible foraging strategies of bears in Foxe Basin may help mitigate their vulnerability to changes in prey distribution and habitat conditions. Our results provide insights into the importance of alternative and supplemental food sources for polar bears during phenological changes in ice conditions that will likely have consequences to Arctic community structure as warming continues.


2004 ◽  
Vol 118 (3) ◽  
pp. 395 ◽  
Author(s):  
Donald J. Hansen

A total of 1112 Polar Bears (Ursus maritimus) at 482 sightings were recorded during aerial surveys in the Beaufort, Chukchi, and northern Bering Seas conducted primarily during September and October from 1979-1999. Of these bears, 784 were observed offshore at 400 sightings. The surveys were conducted by the Naval Ocean Systems Center and Minerals Management Service; they were designed to monitor the fall Bowhead Whale (Balaena mysticetus) migration. Over the 20-year period, 1,096,620 kilometers of surveys were flown. The majority of the offshore Polar Bears, 595 bears at 290 sightings, and most of the kill sites and polar bear tracks were recorded in 80-100% ice cover. The number of bears per kilometer increased substantially in >24% ice cover, with the highest number observed in 80-100% ice cover. This habitat use probably is related to the availability of seals, their primary prey. There were 328 bears (83 sightings) recorded on land, and most of them were associated with whale carcasses and bowhead whale subsistence harvest sites along the Alaskan Beaufort Sea coast.


ARCTIC ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 239-257
Author(s):  
Karyn D. Rode ◽  
Hannah Voorhees ◽  
Henry P. Huntington ◽  
George M. Durner

Successful wildlife management depends upon coordination and consultation with local communities. However, much of the research used to inform management is often derived solely from data collected directly from wildlife. Indigenous people living in the Arctic have a close connection to their environment, which provides unique opportunities to observe their environment and the ecology of Arctic species. Further, most northern Arctic communities occur within the range of polar bears (nanuq, Ursus maritimus) and have experienced significant climatic changes. Here, we used semi-structured interviews from 2017 to 2019 to document Iñupiaq knowledge of polar bears observed over four decades in four Alaskan communities in the range of the Southern Beaufort Sea polar bear subpopulation: Wainwright, Utqiaġvik, Nuiqsut, and Kaktovik. All but one of 47 participants described directional and notable changes in sea ice, including earlier ice breakup, later ice return, thinner ice, and less multiyear pack ice. These changes corresponded with observations of bears spending more time on land during the late summer and early fall in recent decades—observations consistent with scientific and Indigenous knowledge studies in Alaska, Canada, and Greenland. Participants noted that polar bear and seal body condition and local abundance either varied geographically or exhibited no patterns. However, participants described a recent phenomenon of bears being exhausted and lethargic when arriving on shore in the summer and fall after extensive swims from the pack ice. Further, several participants suggested that maternal denning is occurring more often on land than sea ice. Participants indicated that village and regional governments are increasingly challenged to obtain resources needed to keep their communities safe as polar bears spend more time on land, an issue that is likely to be exacerbated both in this region and elsewhere as sea ice loss continues. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophie E. Watson ◽  
Melissa A. McKinney ◽  
Massimo Pindo ◽  
Matthew J. Bull ◽  
Todd C. Atwood ◽  
...  

AbstractThe gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ceylan Bal ◽  
Serpil Erdogan ◽  
Gamze Gök ◽  
Cemil Nural ◽  
Betül Özbek ◽  
...  

Abstract Objectives Calculation of biological variation (BV) components is very important in evaluating whether a test result is clinically significant. The aim of this study is to analyze BV components for copper, zinc and selenium in a cohort of healthy Turkish participants. Methods A total of 10 serum samples were collected from each of the 15 healthy individuals (nine female, six male), once a week, during 10 weeks. Copper, zinc and selenium levels were analyzed by atomic absorption spectrometer. BV parameters were calculated with the approach suggested by Fraser. Results Analytical variation (CVA), within-subject BV (CVI), between-subject BV (CVG) values were 8.4, 7.1 and 4.3 for copper; 4.2, 9.1 and 13.7 for zinc; 7.6, 2.5 and 6.9 for selenium, respectively. Reference change values (RCV) were 30.46, 27.56 and 22.16% for copper, zinc and selenium, respectively. The index of individuality (II) values were 1.65, 0.66 and 0.36 for copper, zinc and selenium, respectively. Conclusions According to the results of this study, traditional reference intervals can be used for copper but we do not recommend using it for zinc and selenium. We think that it would be more accurate to use RCV value for zinc and selenium in terms of following significant changes in recurrent results of a patient.


Sign in / Sign up

Export Citation Format

Share Document