Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population

2014 ◽  
Vol 41 (4) ◽  
pp. 311 ◽  
Author(s):  
Karyn D. Rode ◽  
Anthony M. Pagano ◽  
Jeffrey F. Bromaghin ◽  
Todd C. Atwood ◽  
George M. Durner ◽  
...  

Context The potential for research methods to affect wildlife is an increasing concern among both scientists and the public. This topic has a particular urgency for polar bears because additional research is needed to monitor and understand population responses to rapid loss of sea ice habitat. Aims This study used data collected from polar bears sampled in the Alaska portion of the southern Beaufort Sea to investigate the potential for capture to adversely affect behaviour and vital rates. We evaluated the extent to which capture, collaring and handling may influence activity and movement days to weeks post-capture, and body mass, body condition, reproduction and survival over 6 months or more. Methods We compared post-capture activity and movement rates, and relationships between prior capture history and body mass, body condition and reproductive success. We also summarised data on capture-related mortality. Key results Individual-based estimates of activity and movement rates reached near-normal levels within 2–3 days and fully normal levels within 5 days post-capture. Models of activity and movement rates among all bears had poor fit, but suggested potential for prolonged, lower-level rate reductions. Repeated captures was not related to negative effects on body condition, reproduction or cub growth or survival. Capture-related mortality was substantially reduced after 1986, when immobilisation drugs were changed, with only 3 mortalities in 2517 captures from 1987–2013. Conclusions Polar bears in the southern Beaufort Sea exhibited the greatest reductions in activity and movement rates 3.5 days post-capture. These shorter-term, post-capture effects do not appear to have translated into any long-term effects on body condition, reproduction, or cub survival. Additionally, collaring had no effect on polar bear recovery rates, body condition, reproduction or cub survival. Implications This study provides empirical evidence that current capture-based research methods do not have long-term implications, and are not contributing to observed changes in body condition, reproduction or survival in the southern Beaufort Sea. Continued refinement of capture protocols, such as the use of low-impact dart rifles and reversible drug combinations, might improve polar bear response to capture and abate short-term reductions in activity and movement post-capture.

2011 ◽  
Vol 62 (5) ◽  
pp. 432 ◽  
Author(s):  
A. R. Childs ◽  
T. F. Næsje ◽  
P. D. Cowley

Biotelemetry is an increasingly popular and effective tool to study fish movements. Interpretation of the results relies on the assumption that fish behaviour and physiology is not affected by the presence of the tag. Although the long-term effects of tagging should be evaluated before field telemetry studies, this has rarely been quantified. As a precursor to a long-term telemetry study on Argyrosomus japonicus (Termminck and Schlegel 1843) in South Africa, the effects of surgical implantation of two different-sized tags were assessed in a 256-day experiment. We hypothesised that the larger 13-mm-diameter tags, which exceeded the general 2% tag-to-body mass rule, would have adverse effects on growth, survival and tag retention compared with the smaller 9-mm-diameter tags and an untagged control group. Because no adverse effects in growth were observed among the three groups, nor any long-term tag-related mortality, tag expulsion or internal damage, we suggest that the general 2% tag-to-body mass rule should be regarded only as a broad guide. Further, we conclude that juvenile A. japonicus individuals are well suited for surgical implantation of commercially available 9- and 13-mm-diameter tags and are good candidates for long-term telemetry studies.


2012 ◽  
Vol 33 (3-4) ◽  
pp. 365-372 ◽  
Author(s):  
Thomas Fauvel ◽  
François Brischoux ◽  
Marine Jeanne Briand ◽  
Xavier Bonnet

Long term population monitoring is essential to ecological studies; however, field procedures may disturb individuals. Assessing this topic is important in worldwide declining taxa such as reptiles. Previous studies focussed on animal welfare issues and examined short-term effects (e.g. increase of stress hormones due to handling). Long-term effects with possible consequences at the population level remain poorly investigated. In the present study, we evaluated the effects of widely used field procedures (e.g. handling, marking, forced regurgitation) both on short-term (hormonal stress response) and on long-term (changes in body condition, survival) scales in two intensively monitored populations of sea kraits (Laticauda spp.) in New Caledonia. Focusing on the most intensively monitored sites, from 2002 to 2012, we gathered approximately 11 200 captures/recaptures on 4500 individuals. Each snake was individually marked (scale clipping + branding) and subjected to various measurements (e.g. body size, head morphology, palpation). In addition, a subsample of more than 500 snakes was forced to regurgitate their prey for dietary analyses. Handling caused a significant stress hormonal response, however we found no detrimental long-term effect on body condition. Forced regurgitation did not cause any significant effect on both body condition one year later and survival. These results suggest that the strong short-term stress provoked by field procedures did not translate into negative effects on the population. Although similar analyses are required to test the validity of our conclusions in other species, our results suggest distinguishing welfare and population issues to evaluate the potential impact of population surveys.


Author(s):  
Andrew E. McKechnie

The direct impacts of higher temperatures on birds are manifested over timescales ranging from minutes and hours to years and decades. Over short timescales, acute exposure to high temperatures can lead to hyperthermia or dehydration, which among arid-zone species occasionally causes catastrophic mortality events. Over intermediate timescales of days to weeks, high temperatures can have chronic sub-lethal effects via body mass loss or reduced nestling growth rates, negatively affecting sev eral fitness components. Long-term effects of warming manifested over years to decades involve declining body mass or changes in appendage size. Key directions for future research include elucidating the role of phenotypic plasticity and epigenetic processes in avian adaptation to climate change, examining the role of stress pathways in mediating responses to heat events, and understanding the consequences of higher temperatures for species that traverse hot regions while migrating.


Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Li Weng ◽  
Junning Fan ◽  
Canqing Yu ◽  
Yu Guo ◽  
Zheng Bian ◽  
...  

ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 14 ◽  
Author(s):  
Ian Stirling ◽  
Evan Richardson ◽  
Gregory W. Thiemann ◽  
Andrew E. Derocher

In April and May 2003 through 2006, unusually rough and rafted sea ice extended for several tens of kilometres offshore in the southeastern Beaufort Sea from about Atkinson Point to the Alaska border. Hunting success of polar bears (Ursus maritimus) seeking seals was low despite extensive searching for prey. It is unknown whether seals were less abundant in comparison to other years or less accessible because they maintained breathing holes below rafted ice rather than snowdrifts, or whether some other factor was involved. However, we found 13 sites where polar bears had clawed holes through rafted ice in attempts to capture ringed seals (Phoca hispida) in 2005 through 2006 and another site during an additional research project in 2007. Ice thickness at the 12 sites that we measured averaged 41 cm. These observations, along with cannibalized and starved polar bears found on the sea ice in the same general area in the springs of 2004 through 2006, suggest that during those years, polar bears in the southern Beaufort Sea were nutritionally stressed. Searches made farther north during the same period and using the same methods produced no similar observations near Banks Island or in Amundsen Gulf. A possible underlying ecological explanation is a decadal-scale downturn in seal populations. But a more likely explanation is major changes in the sea-ice and marine environment resulting from record amounts and duration of open water in the Beaufort and Chukchi seas, possibly influenced by climate warming. Because the underlying causes of observed changes in polar bear body condition and foraging behaviour are unknown, further study is warranted.


1986 ◽  
Vol 50 (4) ◽  
pp. 619 ◽  
Author(s):  
Malcolm A. Ramsay ◽  
Ian Stirling

1998 ◽  
Vol 66 (3) ◽  
pp. 697-703 ◽  
Author(s):  
A. M. Sibbald ◽  
G. C. Davidson

AbstractTwo experiments were carried out with Scottish Blackface lambs to investigate the effects of restricted nutrition during pregnancy and lactation on voluntary food intakes (VFI) between weaning and 2 years of age. Ewes were given diets providing 0·7 (LP) or 10 (HP) of their estimated metabolizable energy requirements during the last 6 weeks of pregnancy and subsequently grazed swards with mean sward surface heights of approximately 3 cm (LL) or 6 cm (HL) during lactation. All lambs were weaned at 17 weeks of age. In experiment 1, four treatment combinations (LP-LL, LP-HL, HP-LL and HP-HL) were applied and female lambs were studied. In experiment 2, two treatment combinations (LP-LL and HP-HL) were applied and male lambs were studied. In both experiments the lambs received a common level of nutrition between weaning and 2 years of age.In both experiments, mean live weights were proportionately 0·2 higher for HP-HL than for LP-LL lambs at weaning (P < 0·001) and in experiment 2 mean live weights and body condition scores were still higher in HP-HL than in LP-LL lambs at 2 years of age (P < 0·05). Abomasum weights were higher in HP than in LP lambs at birth and higher in HP-HL than in LP-LL lambs at weaning in experiment 1 and the weights of the rumen and dimensions of the rumen villi were greater in HP-HL than in LP-LL lambs at weaning in both experiments (P < 0·05). The treatments had no effect on lipid content or mean adipocyte diameter in the main fat depots at birth or weaning. There were no treatment effects on VFI in either experiment. It was concluded that restricted nutrition during late pregnancy and early lactation does not affect VFI between weaning and 2 years of age in sheep, even though there are differences in live weight and the development of the gastrointestinal tract at weaning and there may be long-term effects on live weight and body condition, particularly in male animals.


2007 ◽  
Vol 85 (5) ◽  
pp. 596-608 ◽  
Author(s):  
T.W. Bentzen ◽  
E.H. Follmann ◽  
S.C. Amstrup ◽  
G.S. York ◽  
M.J. Wooller ◽  
...  

Ringed seals ( Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals ( Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear ( Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales ( Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.


Sign in / Sign up

Export Citation Format

Share Document