scholarly journals Biotic element analysis of reptiles of China: A test of vicariance model

2013 ◽  
Vol 59 (4) ◽  
pp. 449-457 ◽  
Author(s):  
Youhua Chen

Abstract In this contribution, I identify possible biotic elements of reptiles of China using biotic element analysis. I test whether the vicariance model could significantly shape reptilian current distribution patterns. My results show that dispersal is prevailing for reptiles in China. There are four major biotic elements in reptilian distribution, which are East Xizang, Yunnan-Guizhou Plateau, Taiwan and Hainan, respectively. The test of distributional areas is significantly more clustered than expected by chance, while in another test that closely related species are homogeneously distributed across biotic elements cannot be rejected. Therefore I argued that vicariance might be one of the key processes in patterning reptilian distribution in China. In addition, I develop an improved biotic element analysis in biogeographic studies, by performing biotic element analysis in an iterative manner in order to diagnose more geographically restricted elements until no noise components found. The importance of antecedent selection of distributional data for the subsequent analysis is also discussed. Besides, my study indicates that biodiversity hotspots are not fully overlapped with areas of endemism for reptilians in East Asia.

2012 ◽  
Vol 81 (4) ◽  
pp. 199-221 ◽  
Author(s):  
Bert W. Hoeksema

A phylogenetically based comparative analysis of onshore-offshore distribution patterns of mushroom coral species (Scleractinia: Fungiidae) was made to reconstruct an evolutionary scenario for differentiation in fungiid shelf habitats. This phyloecological study integrates data on fungiid distribution patterns along environmental gradients on the Spermonde Shelf, SW Sulawesi, with a recently published phylogeny reconstruction of the Fungiidae. A mushroom coral fauna of 34 species was used to compare their distributions by use of 50-m2 belt quadrats in transects (1) from the mainland to the shelf edge, (2) around reefs with regard to predominant wind directions, and (3) over bathymetrical reef zones. Species association ordinations were made for each of the four shelf zones using both abundance and incidence data to examine whether closely related species cooccurred. Some closely related species or even sister species appeared to show very similar distribution patterns and to coexist in high abundances. These results indicate that there may not be community saturation and competitive exclusion among mushroom corals species, most of which are free-living. In reconstructions of fungiid habitat evolution, offshore reef slopes appear to be original (ancestral), whereas onshore habitats, shallow reef flats, and deep sandy reef bases seem to be derived. The latter is in contrast with an earlier hypothesis, in which deep sandy substrates were considered ancestral mushroom coral habitats.


2014 ◽  
Vol 59 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Eugene A. Borovichev ◽  
Vadim A. Bakalin ◽  
Masanobu Higuchi

Abstract The discovery of Mannia androgyna (L.) A. Evans in Russian Asian and Japanese localities changes the conception of the distribution patterns of the taxon, previously regarded as principally a Mediterranean species. A description and illustrations based on specimens collected in Russian Asia and Japan are provided. The history of the taxonomic understanding of Mannia androgyna is briefly reviewed, and features differentiating closely related species are discussed.


2017 ◽  
Vol 25 (01) ◽  
pp. 71-81
Author(s):  
YOUHUA CHEN

In theoretical ecology and community ecology, it is still unclear how phylogenetic community structure and species distributions are linked together. In this paper, a neutral model for evaluating phylogenetic constraints on species diversity and distribution patterns is developed to address these issues. To accomplish this, temporal species distribution and diversity patterns are evaluated and simulated by considering the impact of phylogenetic relatedness of species in a lattice landscape with square grids. A continuous patch for the resultant distributional range map of a species is defined as a group of grids in which the interior grids are adjacent to each other while the edge grids of the patch are isolated from other remaining grids in the range map. The adjacency or isolation of a grid with respect to another grid follows the von Neumann neighborhood criterion. The hypothesis tested is: phylogenetically closely related species tend to avoid each other (phylogenetic dilution), which produces a phylogenetic overdispersion pattern. In this case, all species have similar species abundances and distribution-patch size patterns. In contrast, if closely related species tend to associate together (phylogenetic concentration), a phylogenetic clustering pattern emerges: phylogenetically distinct species tend to have higher abundances and more large distribution patches. Using simulations, this paper presents results which demonstrate the reverse phenomenon: if it is assumed that phylogenetic relatedness of species is modeled as a dilution effect, the resultant distributional maps for evolutionarily distinct species present significantly increased numbers of continuous large patches. An evolutionarily distinct clade tends to have significantly higher relative abundance than other clades in all simulations. It was also found that if phylogenetic relatedness of species is modeled as a concentration effect, the simulated distributional map of each species would present a similar percentage of large patches for both evolutionarily unique and common clades for many cases when the community size is large enough. However, being similar to dilution effect, the resultant species relative abundance for evolutionarily unique clade is significantly higher than that for evolutionarily common clade. In conclusion, evolutionary distinct species will have more chances to survive with high populations and less fragmented distributional range in environments where the phylogenetic dilution effect is functioning. It is hoped that these results contributed to clarifying the complex associations generated by phylogenetic community structure in future ecological and evolutionary studies.


Author(s):  
J. A. Gibson

SynopsisThree comprehensive surveys of Clyde vertebrates have been carried out during the past twenty-five years, and this exceptional degree of investigation permits some very valid comparisons to be made. Distinct changes in status have taken place throughout all the vertebrate classes. The work of man has had the most obvious impact. This is sometimes deliberate, as in direct attempts at species protection or destruction. At other times the impact of man is indirect, with effects on food supply, on habitat, or on health. Occasionally the effects are accidental. Many status changes are easily explained under the above headings, but others are not, and some show apparently opposite changes in closely-related species. Some changes in status are very real, and indeed are sometimes quite dramatic and obvious for all to see. Others are more apparent than real, presumably arising from increased observation. A representative selection of species is discussed.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Yang ◽  
Gao-Fei Fu ◽  
Zhi-Qiang Wu ◽  
Li Li ◽  
Jian-Li Zhao ◽  
...  

Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878–163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.


Sign in / Sign up

Export Citation Format

Share Document