scholarly journals Analysis of Multiple Occurrences of Alternative Splicing Events in Arabidopsis thaliana Using Novel Sequenced Full-Length cDNAs

DNA Research ◽  
2009 ◽  
Vol 16 (3) ◽  
pp. 155-164 ◽  
Author(s):  
K. Iida ◽  
K. Fukami-Kobayashi ◽  
A. Toyoda ◽  
Y. Sakaki ◽  
M. Kobayashi ◽  
...  
2020 ◽  
Author(s):  
Wei Zhou ◽  
Yaxing Zhou ◽  
Guoli Zhu ◽  
Yun Wang ◽  
Zhibiao He ◽  
...  

AbstractBackground and ObjectivesCastor (Ricinus communis L.) is an important non-edible oilseed crop. Lm type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in inflorescence structures and leaf shapes. To better understand the mechanisums underling these differences at the molecular level, we performed comparative transcriptional analysis.Materials and MethodsFull-length transcriptome sequencing and short-read RNA sequencing were employed.ResultsA total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm type female strains and normal amphiprotic strains, respectively. In Lm female strain and normal amphiprotic strains 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed great different gene expression of common and unique transcription factors between the two cultivars. Meanwhile, functional analysis of isoform was conducted. Full-length sequences were used as a reference genome, and short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis.ConclusionsThe results revealed considerable difference and expression diversity between two cultivars, well beyond what was reported in previous studies, likely reflecting the differences in architecture between these two cultivars.HighlightUsing the full-length transcriptome sequencing technology, we performed comparative analysis of transcription factors of two castor cultivars, analyzed alternative splicing events, and identified their lncRNAs.


2020 ◽  
Vol 61 (5) ◽  
pp. 882-896
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

Abstract Spartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used Pacific Biosciences (PacBio) full-length single-molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt gradient experiments. High-quality unigenes, transcription factors, non-coding RNA and Spartina-specific transcripts were identified. Co-expression network analysis found that protein kinase-encoding genes (SaOST1, SaCIPK10 and SaLRRs) are hub genes in the salt tolerance regulatory network. High salt stress induced the expression of transcription factors but repressed the expression of long non-coding RNAs. The Spartina transcriptome is closer to rice than Arabidopsis, and a higher proportion of transporter and transcription factor-encoding transcripts have been found in Spartina. Transcriptome analysis showed that high salt stress induced the expression of carbohydrate metabolism, especially cell-wall biosynthesis-related genes in Spartina, and repressed its expression in rice. Compared with rice, high salt stress highly induced the expression of stress response, protein modification and redox-related gene expression and greatly inhibited translation in Spartina. High salt stress also induced alternative splicing in Spartina, while differentially expressed alternative splicing events associated with photosynthesis were overrepresented in Spartina but not in rice. Finally, we built the SAPacBio website for visualizing full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes and alternative splicing events in Spartina. Overall, this study suggests that the salt tolerance mechanism in Spartina is different from rice in many aspects and is far more complex than expected.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dandan Sun ◽  
Xiaoqin Li ◽  
Zhongtao Yin ◽  
Zhuocheng Hou

Adipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose. However, there has been no systematic analysis of the dynamics of differential alternative splicing of abdominal and subcutaneous adipose in Pekin duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data, respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs) and 74,571 alternative splicing events. In addition, combined with the next-generation sequencing technology, we correlated the structure and function annotation with the differential expression profiles of abdominal and subcutaneous adipose transcripts. This study identified lots of novel alternative splicing events and major transcripts of transcription factors related to adipose synthesis. STAT3 was reported as a vital gene for adipogenesis, and we found that its major transcript is STAT3-1, which may play a considerable role in the process of adipose synthesis in Pekin duck. This study greatly increases our understanding of the gene models, genome annotations, genome structures, and the complexity and diversity of abdominal and subcutaneous adipose in Pekin duck. These data provide insights into the regulation of alternative splicing events, which form an essential part of transcript diversity during adipogenesis in poultry. The results of this study provide an invaluable resource for studying alternative splicing and tissue-specific expression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248749
Author(s):  
Guang Mao Shen ◽  
Shi Yuan Ou ◽  
Chu He ◽  
Jie Liu ◽  
Lin He

The striped flea beetle, Phyllotreta striolata (Fabricius), damages crops in the Brassicaceae. The genetic data for this pest are insufficient to reveal its insecticide resistance mechanisms or to develop molecular markers for resistance monitoring. We used PacBio Iso-Seq technology to sequence the full-length transcriptome of P. striolata. After isoform sequence clustering and removal of redundant transcripts, a total of 41,293 transcripts were obtained, and 35,640 of these were annotated in the database of gene products. Structure analysis uncovered 4,307 alternative splicing events, and 3,836 sequences were recognized as lncRNAs. Transcripts with the complete coding region of important detoxification enzymes were further classified. There were 57 transcripts of P450s distributed in CYP2, CYP3, CYP4, and Mito CYP clades, 29 transcripts of ESTs from 4 functional groups, 17 transcripts of GSTs classified into 5 families, 51 transcripts of ABCs distributed in 6 families, and 19 transcripts of UGTs. Twenty-five lncRNAs were predicted to be regulators of these detoxification genes. Full-length transcriptome sequencing is an efficient method for molecular study of P. striolata and it is also useful for gene function analysis.


2010 ◽  
Vol 32 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Xiao-Lu WU ◽  
Xiao-Qian TANG ◽  
Li-Xia YU ◽  
You-Lin YAO ◽  
Bo YAN

Sign in / Sign up

Export Citation Format

Share Document