scholarly journals Hypericum triquetrifolium—Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-αin THP-1 Cells

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Bashar Saad ◽  
Bernadette Soudah AbouAtta ◽  
Walid Basha ◽  
Alaa Hmade ◽  
Abdalsalam Kmail ◽  
...  

Based on knowledge from traditional Arab herbal medicine, thisin vitrostudy aims to examine the anti-inflammatory mechanism ofHypericum triquetrifoliumby measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-αand IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts ofH. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL−1) that had no cytotoxic effects, as measured with MTT and LDH assays.Hypericum triquetrifoliumextracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest thatH. triquetrifoliumprobably exerts anti-inflammatory effects through the suppression of TNF-αand iNOS expressions.

Planta Medica ◽  
2017 ◽  
Vol 83 (09) ◽  
pp. 770-777 ◽  
Author(s):  
Franciane Marques ◽  
Maycow da Costa ◽  
Cátia Vittorazzi ◽  
Luciane Gramma ◽  
Thiago Barth ◽  
...  

Abstract Struthanthus vulgaris is probably the most common medicinal mistletoe plant in Brazil, and has been used in folk medicine as an anti-inflammatory agent and for cleaning skin wounds. Our proposal was to evaluate the anti-inflammatory activity of S. vulgaris ethanol leaf extract and provide further insights of how this biological action could be explained using in vitro and in vivo assays. In vitro anti-inflammatory activity was preliminarily investigated in lipopolysaccharide/interferon gamma-stimulated macrophages based on their ability to inhibit nitric oxide production and tumor necrosis factor-alpha. In vivo anti-inflammatory activity of S. vulgaris ethanol leaf extract was investigated in the mice carrageenan-induced inflammation air pouch model. The air pouches were inoculated with carrageenan and then treated with 50 and 100 mg/kg of S. vulgaris ethanol leaf extract or 1 mg/kg of dexamethasone. Effects on the immune cell infiltrates, pro- and anti-inflammatory mediators such as tumor necrosis factor-alpha, interleukin 1, interleukin 10, and nitric oxide, were evaluated. The chemical composition of S. vulgaris ethanol leaf extract was characterized by LC-MS/MS. In vitro S. vulgaris ethanol leaf extract significantly decreased the production of nitric oxide and tumor necrosis factor-alpha in macrophages and did not reveal any cytotoxicity. In vivo, S. vulgaris ethanol leaf extract significantly suppressed the influx of leukocytes, mainly neutrophils, protein exudation, nitric oxide, tumor necrosis factor-alpha, and interleukin 1 concentrations in the carrageenan-induced inflammation air pouch. In conclusion, S. vulgaris ethanol leaf extract exhibited prominent anti-inflammatory effects, thereby endorsing its usefulness as a medicinal therapy against inflammatory diseases, and suggesting that S. vulgaris ethanol leaf extract may be a source for the discovery of novel anti-inflammatory agents.


1993 ◽  
Vol 21 (Supplement) ◽  
pp. S278 ◽  
Author(s):  
Anand Kumar ◽  
R Kosuri ◽  
P Kandula ◽  
V Thota ◽  
J Olson ◽  
...  

Life Sciences ◽  
1996 ◽  
Vol 59 (13) ◽  
pp. PL207-PL211 ◽  
Author(s):  
Teresa Iuvone ◽  
Fulvio D'Acquisto ◽  
Rosa Carnuccio ◽  
Massimo Di Rosa

2005 ◽  
Vol 33 (03) ◽  
pp. 415-424 ◽  
Author(s):  
Eunkyue Park ◽  
Susan Kum ◽  
Chuanhua Wang ◽  
Seung Yong Park ◽  
Bo Sook Kim ◽  
...  

Houttuynia cordata Thunb. (HC), Glycyrrhiza uralensis Fischer (GU), Forsythia suspense (Thunb.) Vahl (FS), and Lonicera japonica Thunb. (LJ) are Chinese herbs known to possess anti-inflammatory properties. The effects of aqueous extracts of these herbs on the production of the pro-inflammatory mediators, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were examined in an activated macrophage-like cell line, RAW 264.7 cells. Aqueous extracts from FS at 0.0625–2.0 mg/ml inhibited in vitro production of NO and secretion of TNF-α in a dose-dependent manner. FS at 1.0–2.0 mg/ml and 0.125–2.0 mg/ml significantly inhibited NO production and TNF-α, respectively. An extract of LJ demonstrated potent inhibition of both NO production and TNF-α secretion in a dose-dependent manner. An aqueous extract from HC inhibited NO production in a dose-dependent manner, but minimally (approximately 30%) inhibited TNF-α secretion at 0.0625 and 0.125 mg/ml. In contrast, an aqueous extract of GU had a minimal effect on both the production of NO and the secretion of TNF-α. Viability of cells at all concentrations studied was unaffected as determined by MTT cytotoxicity assay and trypan blue dye exclusion. These results suggest that aqueous extracts from FS, LJ and HC have anti-inflammatory actions as measured by inhibition of NO production and/or TNF-α secretion.


2011 ◽  
Vol 39 (01) ◽  
pp. 171-181 ◽  
Author(s):  
Su-Jin Kim ◽  
Jae-Young Um ◽  
Seung-Heon Hong ◽  
Ju-Young Lee

Hyperoside (quercetin-3-O-galactoside) is a flavonoid compound mainly found in the herb plants Hypericum perforatum L and Crataegus pinnatifida. Although hyperoside has a variety of pharmacological effects including anti-viral, anti-oxidative, and anti-apoptotic activities, the anti-inflammatory mechanism of hyperoside in mouse peritoneal macrophages remains unclear. In this study, hyperoside was shown to exert an anti-inflammatory action through suppressed production of tumor necrosis factor, interleukin-6, and nitric oxide in lipopolysaccharide-stimulated mouse peritoneal macrophages. The maximal inhibition rate of tumor necrosis factor-α, interleukin-6, and nitric oxide production by 5 μM hyperoside was 32.31 ± 2.8%, 41.31 ± 3.1%, and 30.31 ± 4.1%, respectively. In addition, hyperoside inhibited nuclear factor-κB activation and IκB-α degradation. The present study suggests that an important molecular mechanism by hyperoside reduces inflammation, which might explain its beneficial effect in the regulation of inflammatory reactions.


Author(s):  
Qiang Fu ◽  
Qian Shen ◽  
Jin Tong ◽  
Liu Huang ◽  
Yi Cheng ◽  
...  

Breast cancer is a leading type of malignant tumor in women; however, the immunotherapy in breast cancer is still underappreciated. In this study, we demonstrated that tumor necrosis factor receptor 2 (TNFR2) is highly expressed in both breast tumor tissue and tumor-infiltrating immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs). We found that TNFR2 antagonistic antibody reduced Foxp3 expression and the proliferation of Tregs and impaired the inhibitory effect of Tregs on CD4+CD25– effector T (Teff) cells in a dose-dependent manner. The treatment of anti-TNFR2 antibody not only inhibited the proliferation of breast tumor cells in vitro but also suppressed the tumorigenesis of murine mammary carcinoma 4T1 cells in vivo. Mice recovered from tumor growth also developed 4T1-specific immunity. Furthermore, we demonstrated that anti-TNFR2 antibody in combination with anti-PD-L1 exhibited augmented antitumor effects than monotherapy. Anti-TNFR2 treatment also tended to increase the expression of proinflammatory cytokines in tumor tissues. In conclusion, our study suggests that TNFR2 antagonist could potentially offer a clinical benefit as a single agent or in combination with immune checkpoint blockade treatment for breast cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document