scholarly journals P828 DNA methylation profile defines epigenetic characteristics and molecular targets of Crohn’s disease

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
T O Kim ◽  
J Yi ◽  
S H Jung ◽  
D H Baek ◽  
H S Lee

Abstract Background Inflammatory bowel disease(IBD) is known to be caused by a genetic predisposition involving multiple genes; however, there is growing evidence that abnormal interaction with environmental, particularly epigenetic, factors can have a significant contribution during the development of IBD. Although many studies, particularly genome-wide association studies (GWAS), have been performed to identify the genetic changes underlying the pathogenesis of Crohn’s disease (CD), the role of epigenetic changes in the development of complications arising from CD is poorly understood. Methods Here, we employed an unbiased approach to define DNA methylation alteration in CD patients using the Human Methylation 450K Bead Chip platform. Compared to normal controls, the majority of differential DNA methylation in CD patient samples was in the promoter, intergenic, and gene body regions. Results The DNA methylation profile in CD revealed 134 probes (23 hypermethylated and 111 hypomethylated probes) that were differentially methylated. We validated the methylation levels of 19 genes that showed hypermethylation in CD patients compared with normal control. Technical validation was performed using quantitative MSP analysis and we finally identified that the Fragile Histidine Triad (FHIT) genes were hypermethylated in a disease-specific manner. Using a large cohort for CD patients samples (n = 207), we found that FHIT is frequently methylated in CD patients (71%) by MSP and significantly increasing methylation level in CD patient samples. In addition, we confirmed the methylation level of FHIT gene between normal colon and CD patients. Due to hypermethylation of FHIT gene promoter in CD patients, we observed that the level of FHIT protein is downregulated in CD patient samples compared with normal by IHC analysis. Gene network analysis by GO and metascape for hypermethylated genes in CD patients suggested putative cellular and molecular interactions relevant to IBD pathology. Conclusion Overall, our DNA methylation profile identifies newly hypermethylated genes in CD, as well as paves the way to a better understanding of the role of epigenetics in the pathogenesis of CD, and provides direction for future research in the diagnosis/prognosis or therapeutic treatments for CD.

2020 ◽  
Vol 9 (5) ◽  
pp. 1338 ◽  
Author(s):  
Tae-Oh Kim ◽  
Dong-Il Park ◽  
Yu Kyeong Han ◽  
Keunsoo Kang ◽  
Sae-Gwang Park ◽  
...  

Inflammatory bowel disease is known to be associated with a genetic predisposition involving multiple genes; however, there is growing evidence that abnormal interactions with environmental factors, particularly epigenetic factors, can also significantly contribute to the development of inflammatory bowel disease (IBD). Although many genome-wide association studies have been performed to identify the genetic changes underlying the pathogenesis of Crohn’s disease, the role of epigenetic alterations based on molecular complications arising from Crohn’s disease (CD) is poorly understood. We employed an unbiased approach to define DNA methylation alterations in colonoscopy samples from patients with CD using the HumanMethylation450K BeadChip platform. Technical and functional validation was performed by methylation-specific PCR (MSP) and bisulfite sequencing of a validation set of 207 patients with CD samples. Immunohistochemistry (IHC) analysis was performed in the representative sample sets. DNA methylation profile in CD revealed that 135 probes (24 hypermethylated and 111 hypomethylated probes) were differentially methylated. We validated the methylation levels of 19 genes that showed hypermethylation in patients with CD compared with normal controls. We uniquely identified that the fragile histidine triad (FHIT) gene was hypermethylated in a disease-specific manner and its protein level was downregulated in patients with CD. Pathway analysis of the hypermethylated candidates further suggested putative molecular interactions relevant to IBD pathology. Our data provide information on the biological and clinical implications of DNA hypermethylated genes in CD, identifying FHIT methylation as a promising new biomarker for CD. Further study of the role of FHIT in IBD pathogenesis may lead to the development of new therapeutic targets.


2018 ◽  
Vol 30 (2) ◽  
pp. 349 ◽  
Author(s):  
Xi Chen ◽  
Liu-Hong Shen ◽  
Li-Xuan Gui ◽  
Fang Yang ◽  
Jie Li ◽  
...  

The biological structure and function of the mammalian testis undergo important developmental changes during prepuberty and DNA methylation is dynamically regulated during testis development. In this study, we generated the first genome-wide DNA methylation profile of prepubertal porcine testis using methyl-DNA immunoprecipitation (MeDIP) combined with high-throughput sequencing (MeDIP-seq). Over 190 million high-quality reads were generated, containing 43 642 CpG islands. There was an overall downtrend of methylation during development, which was clear in promoter regions but less so in gene-body regions. We also identified thousands of differentially methylated regions (DMRs) among the three prepubertal time points (1 month, T1; 2 months, T2; 3 months, T3), the majority of which showed decreasing methylation levels over time. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that many genes in the DMRs were linked with cell proliferation and some important pathways in porcine testis development. Our data suggest that DNA methylation plays an important role in prepubertal development of porcine testis, with an obvious downtrend of methylation levels from T1 to T3. Overall, our study provides a foundation for future studies and gives new insights into mammalian testis development.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S129-S130
Author(s):  
I Hageman ◽  
A Li Yim ◽  
V Joustra ◽  
M Ghiboub ◽  
K Gecse ◽  
...  

Abstract Background SP140 (Speckled 140 KDa) encodes an epigenetic reader protein with an immune restricted expression, that binds to epigenetically modified (acetylated and methylated) histones and thereby regulates expression of large gene sets, including pro-inflammatory cytokines, in innate immune cells. SP140 is implicated in CD because single nucleotide polymorphisms, as well as defective protein function are associated with CD and marks anti-TNF response. Through a genome-wide methylation screen of Crohn’s disease (CD) patients peripheral blood, we identified two hypermethylated positions in SP140 locus associated with CD patients. We hypothesise that this DNA hypermethylation at the SP140 locus controls SP140 expression in CD patients contributing to their colitis development. Methods To address the role of SP140 DNA methylation, we used CRISPR ‘dead’ Cas9 (dCas9) epigenome-editing for specifically adding methyl groups (dCas9-DNMT) or removing methyl groups (dCas9-TET) in monocyte cell line THP1. We developed guide RNAs complementary to the gene expression regulatory region of the SP140 gene. With lentiviral delivery, we transduced THP-1 cells with guide RNA-lentiviruses, and with dCas9-DNMT or dCas9-TET lentiviruses. We assessed the level of SP140 methylation using bisulphite Sanger sequencing and the effect of methylation intervention of SP140 using qPCR and ELISA for SP140, IL-6, TNFα, IL-1β. Results We observed that SP140 gene in THP-1 cells under control conditions contained little methylated CpG sites. We induced sp140 hypermethylation through transduction of dCas9-DNMT. We validated hypermethylation of the two SP140 CpGs in transduced THP1 cells, thus mimicking the observed hypermethylation in CD patients cells. SP140 hypermethylation in THP1 cells polarised into M1 macrophages and stimulated with lipoteichoic acid (TLR-2 ligand), displayed a decrease of TNFα and (p = 0.042) protein levels. Similarly, we showed a decrease of TNFα (p = 0.02) and IL-6 (p = 0.03) protein release after transduction dCas9-DNMT and stimulation with LPS or Zymosan (TLR-2/4 ligand). Conclusion In this study, we demonstrated that editing SP140 gene methylation through CRISPR-dCAS9 technology allows modelling of the relevance of epigenetic marks for CD aetiology. Through methylome editing, we could affect the expression of CD-associated pro-inflammatory genes. Our dCas9 technique will allow us to investigate the role of DNA-methylation in the aetiology of CD.


AGE ◽  
2012 ◽  
Vol 35 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Davide Gentilini ◽  
Daniela Mari ◽  
Davide Castaldi ◽  
Daniel Remondini ◽  
Giulia Ogliari ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yumeng Qi ◽  
Liming Zhang ◽  
Xiaonan Yang ◽  
Biao Tang ◽  
Ting Xiao

BackgroundChronic spontaneous urticaria (CSU) is a common autoimmune skin disease. Little is known about the role of epigenetics in the pathogenesis of CSU. This study aimed to investigate genome-wide DNA methylation profile in whole blood of patients with CSU.Patients and MethodsGenome-wide DNA methylation levels in whole blood samples of 95 Chinese Han ethnicity adult CSU patients and 95 ethnicity-, age- and sex-matched healthy controls were analyzed using Illumina 850K methylation chip. The differentially methylated genes (DMGs) were screened out and then functionally annotated by the gene ontology and the Kyoto encyclopedia of genes and genomes databases.ResultsA total of 439 differentially methylated positions (DMPs) (p < 0.01 and |Δβ| ≥ 0.06) were identified with 380 hypomethylated and 59 hypermethylated. The average global DNA methylation levels of the 439 DMPs in the CSU patients were significantly lower than those in the healthy controls (p < 0.001). The distribution of the 439 DMPs was wide on chromosome 1 to 22 and chromosome X. Chromosome 6 embodied the largest number of DMPs (n = 51) and their annotated genes were predominantly related to autoimmunity. The 304 annotated DMGs were mainly enriched in autoimmune disease- and immune-related pathways. A total of 41 DMPs annotated to 28 DMGs were identified when p < 0.01 and |Δβ| ≥ 0.1. Of the 28 DMGs, HLA-DPB2, HLA-DRB1, PPP2R5C, and LTF were associated with autoimmunity. CSU cases with elevated total IgE, positive anti-thyroid peroxidase IgG autoantibodies, positive anti-thyroglobulin IgG autoantibodies, angioedema, UASday > 4, or recurrent CSU showed phenotype-specific DMPs as compared with cases with normal total IgE, negative anti-thyroid peroxidase IgG autoantibodies, negative anti-thyroglobulin IgG autoantibodies, no angioedema, UASday ≤ 4, or non-recurrent CSU respectively.ConclusionThis study shows a distinct genome-wide DNA methylation profile in Chinese Han ethnicity adult CSU patients and indicates a role of epigenetics in the pathogenesis of CSU. The predominant enrichment of the CSU-associated DMGs in immunological pathways provides supportive evidence for the immunopathogenesis of CSU. Future research on the CSU-associated DMPs and DMGs will help discover potential therapeutic targets for CSU.


2019 ◽  
Vol 10 ◽  
Author(s):  
Giuseppe Petruzzellis ◽  
Iside Alessi ◽  
Giovanna Stefania Colafati ◽  
Francesca Diomedi-Camassei ◽  
Andrea Ciolfi ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 410.3-411
Author(s):  
M. Vecellio ◽  
A. Ceribelli ◽  
E. Paraboschi ◽  
N. Isailovic ◽  
F. Motta ◽  
...  

Background:Psoriatic disease is a chronic inflammatory disorder spanning from skin disease (psoriasis) to psoriatic arthritis (PsA). The genetic background is insufficient to explain disease onset as illustrated by not very informative Genome Wide Association Studies and monozygotic (MZ) twin studies recently performed. It is strongly assumed that epigenetics may contribute to disease susceptibility modulating gene expression. DNA methylation has been found involved in several autoimmune inflammatory rheumatic diseases. Here we have analysed the DNA methylation profile of a selected cohort of MZ twins discordant for psoriasis/PsA.Objectives:To identify the methylome associated with psoriasis and PsA in the peripheral blood of MZ twins discordant for these conditions.Methods:Peripheral blood from 7 couples of MZ twins discordant for psoriatic disease was collected and DNA extracted for a genome-wide evaluation of the DNA methylation profile, with the Infinium MethylationEPIC BeadChip. Minfi and the packages of the Bioconductor were used to analyse the data obtained. Quality control and exclusion criteria were applied to the raw data having a final number of 762.451 probes, which accounts for 88% of the total.Results:The approach first identified 2564 differentially methylated positions (DMPs; *p<0.005) with 19 genes potentially affected (with at least two DMPs within 1 kb of distance), including SMAD3 and SMARCA4/BRG1 involved in the Interferon and TGFβ pathways. Gene Ontology (GO) analysis of DMP-associated genes showed a significative enrichment (*p<0.005) in transcription factor binding, transcription corepressor and transcription coactivator activity, SMAD binding and histone -lysine-N-methyltransferase activity. To further validate the results, 5’-methylcytosine immunoprecipitation (MedIP) followed by Real Time PCR was performed to assess the methylation level of SMAD3 and SMARCA4/BRG1 promoters in the same cohort of MZ twins. We found significantly DNA methylation enrichment in SMARCA4/BRG1 promoter in psoriatic disease twins (p<0.05). SMAD3 and SMARCA4/BRG1 mRNA expression was also assessed to evaluate any inverse correlation with promoter methylation level, on the MZ cohort used for the EPIC array (n=4) and on a cohort of PsA/Ps patients (n=8) and appropriate healthy controls (n=3). Reduced mRNA expression (p<0.05) was demonstrated for SMARCA4/BRG1 (n=4). Conversely, no changes were found for SMAD3.Conclusion:We report the first DNA methylation approach in MZ twins discordant for psoriatic disease. We believe that the observed changes in SMAD3 and SMARCA/BRG1 genes may suggest an epigenetic imbalance of chromatin remodelling factors involved in inflammation pathways with a potential role in PsA/psoriasis immunopathogenesis.Disclosure of Interests:None declared


2020 ◽  
Vol 158 (3) ◽  
pp. S21-S22
Author(s):  
Peilin Zhang ◽  
Lawrence Minardi ◽  
J. Todd Kuenstner ◽  
Steve Zekan ◽  
Rusty Kruzelock

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
G Benincasa ◽  
C Schiano ◽  
T Infante ◽  
M Franzese ◽  
R Casale ◽  
...  

Abstract Aims Immune endothelial inflammation, underlie coronary heart disease (CHD) related phenotypes, could provide new insight into the pathobiology of the disease. We investigated DNA methylation level of the unique CpG island of HLA-G gene in CHD patients and evaluated the correlation with cardiac computed tomography angiography (CCTA) features. Methods Thirty-two patients that underwent CCTA for suspected CHD were enrolled for this study. Obstructive CHD group included fourteen patients, in which there was a stenosis greater than or equal to 50% in one or more of the major coronary arteries detected; whereas subjects with Calcium (Ca) Score=0, uninjured coronaries and with no obstructive CHD were considered as control subjects (Ctrls) (n=18). For both groups, DNA methylation profile of the whole 5'UTR-CpG island of HLA-G was measured. The plasma soluble HLA-G (sHLA-G) levels were detected in all subjects by specific ELISA assay. Statistical analysis was performed using R software. Results For the first time, our study reported that 1) a significant hypomethylation characterized three specific fragments (B, C and F) of the 5'UTR-CpG island (p=0.05) of HLA-G gene in CHD patients compared to Ctrl group; 2) hypomethylation level of one specific fragment positively correlated with coronary Ca score, a relevant parameter of CCTA (p&lt;0.05) between two groups. Conclusions Our results showed that reduced levels of circulating HLA-G molecules could derive from epigenetic marks inducing hypomethylation of specific regions into 5'UTR-CpG island of HLA-G gene in CHD patients with obstructive coronary stenosis vs non critical stenosis group. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Minister of Health


Sign in / Sign up

Export Citation Format

Share Document