scholarly journals Impact of mothers' early life exposure to low or high folate on progeny outcome and DNA methylation patterns

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Lundi Ly ◽  
Donovan Chan ◽  
Mylène Landry ◽  
Camille Angle ◽  
Josée Martel ◽  
...  

Abstract The dynamic patterning of DNA and histone methylation during oocyte development presents a potentially susceptible time for epigenetic disruption due to early life environmental exposure of future mothers. We investigated whether maternal exposure to folic acid deficient and supplemented diets starting in utero could affect oocytes and cause adverse developmental and epigenetic effects in next generation progeny. Female BALB/c mice (F0) were placed on one of four amino acid defined diets for 4 weeks before pregnancy and throughout gestation and lactation: folic acid control (rodent recommended daily intake; Ctrl), 7-fold folic acid deficient, 10-fold folic acid supplemented or 20-fold folic acid supplemented diets. F1 female pups were weaned onto Ctrl diets, mated to produce the F2 generation and the F2 offspring were examined at E18.5 for developmental and epigenetic abnormalities. Resorption rates were increased and litter sizes decreased amongst F2 E18.5-day litters in the 20-fold folic acid supplemented group. Increases in abnormal embryo outcomes were observed in all three folic acid deficient and supplemented groups. Subtle genome-wide DNA methylation alterations were found in the placentas and brains of F2 offspring in the 7-fold folic acid deficient , 10-fold folic acid supplemented and 20-fold folic acid supplemented groups; in contrast, global and imprinted gene methylation were not affected. The findings show that early life female environmental exposures to both low and high folate prior to oocyte maturation can compromise oocyte quality, adversely affecting offspring of the next generation, in part by altering DNA methylation patterns.

Author(s):  
Bhongir Aparna Varma ◽  
Srilatha Bashetti ◽  
Rajagopalan Vijayaraghavan ◽  
Kumar Sai Sailesh

 Epigenetics is one of the exciting and fastest expanding fields of biology; this is above genetics. Methylation is the process involved in the transfer of methyl group to amino acids, proteins, enzymes and DNA of all the cells, and tissues of the body. During cell-division low folate availability may result in decreased production of thymidine wherein uracil may be substituted in the place of thymidine in the DNA sequence. It was reported that folate and Vitamin B12 restricted diet resulted in aberrant methylation patterns. The current review was undertaken to explore the role of folic acid and Vitamin B12 in DNA methylation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Bordoni ◽  
Cinzia Nasuti ◽  
Antonio Di Stefano ◽  
Lisa Marinelli ◽  
Rosita Gabbianelli

Early-life exposure (from postnatal day 6 to postnatal day 21) to permethrin has been associated with long-term development of dopaminergic neurodegeneration in rats. Here, we first investigated if the dopamine decrease observed following early postnatal exposure to permethrin, an oxidative stressor, can impair the dopamine level in the brain of their untreated offspring. Secondly, we evaluated whether this adverse event affects the epigenome of both directly exposed rats (F0) and their untreated offspring (F1). The results show that early-life exposure to the stressor is associated with changes in global DNA methylation and hydroxymethylation in adult age. Furthermore, parental exposure leads to a significant reduction in dopamine level in the offspring (F1) born from parents or just mothers early-life treated (72.72% and 47.35%, respectively). About 2/3 of pups from exposed mothers showed a significant reduction in dopamine level compared to controls. Global DNA methylation and hydroxymethylation impairment was associated with the F1 pups that showed reduced dopamine. This study provides pivotal evidences on intergenerational effects of postnatal exposure to permethrin emphasizing that this xenobiotic can influence the epigenetic memory of early-life parental perturbations disturbing offspring health.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Meghan Rodriquez ◽  
Madhur Shetty ◽  
Elizabeth Black ◽  
Matthew Kretschmar ◽  
Danielle Perley ◽  
...  

Toxics ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Laura Bordoni ◽  
Cinzia Nasuti ◽  
Maria Mirto ◽  
Fabio Caradonna ◽  
Rosita Gabbianelli

2018 ◽  
Vol 120 (9) ◽  
pp. 961-976 ◽  
Author(s):  
Khalil ElGendy ◽  
Fiona C. Malcomson ◽  
Jose G. Lara ◽  
David Michael Bradburn ◽  
John C. Mathers

AbstractDNA methylation is a key component of the epigenetic machinery that is responsible for regulating gene expression and, therefore, cell function. Patterns of DNA methylation change during development and ageing, differ between cell types, are altered in multiple diseases and can be modulated by dietary factors. However, evidence about the effects of dietary factors on DNA methylation patterns in humans is fragmentary. This study was initiated to collate evidence for causal links between dietary factors and changes in DNA methylation patterns. We carried out a systematic review of dietary intervention studies in adult humans using Medline, EMBASE and Scopus. Out of 22 149 screened titles, sixty intervention studies were included, of which 65% were randomised (n 39). Most studies (53%) reported data from blood analyses, whereas 27% studied DNA methylation in colorectal mucosal biopsies. Folic acid was the most common intervention agent (33%). There was great heterogeneity in the methods used for assessing DNA methylation and in the genomic loci investigated. Meta-analysis of the effect of folic acid on global DNA methylation revealed strong evidence that supplementation caused hypermethylation in colorectal mucosa (P=0·009). Meta-regression analysis showed that the dose of supplementary folic acid was the only identified factor (P<0·001) showing a positive relationship. In summary, there is limited evidence from intervention studies of effects of dietary factors, other than folic acid, on DNA methylation patterns in humans. In addition, the application of multiple different assays and investigations of different genomic loci makes it difficult to compare, or to combine, data across studies.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 219 ◽  
Author(s):  
Vincent Somerville ◽  
Michaela Schwaiger ◽  
Philipp E. Hirsch ◽  
Jean-Claude Walser ◽  
Karen Bussmann ◽  
...  

The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.


PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17706 ◽  
Author(s):  
Asmita Kulkarni ◽  
Kamini Dangat ◽  
Anvita Kale ◽  
Pratiksha Sable ◽  
Preeti Chavan-Gautam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document