scholarly journals Left ventricular four-dimensional blood flow energetics and vorticity in chronic myocardial infarction patients with/without left ventricular thrombus

2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
A Demirkiran ◽  
M ECJ Hassell ◽  
P Garg ◽  
M SM Elbaz ◽  
R Delewi ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): The British Heart Foundation [FS/10/62/28409] and Dutch ZonMw [104003001]. Background Left ventricular thrombus (LVT) formation is a frequent and serious complication of myocardial infarction (MI). How global LV flow characteristics are related to this phenomenon is yet uncertain. In this study, we investigated LV flow differences using 4D flow cardiovascular magnetic resonance (CMR) between chronic MI patients with LVT [MI-LVT(+)] and without LVT [MI-LVT(-)], and healthy controls. Methods In this prospective cohort study, the 4D flow CMR data were acquired in 19 chronic MI patients (MI-LVT(+), n= 9 and MI-LVT(-), n= 10) and 9 age-matched controls. All included subjects were in sinus rhythm. The following LV flow parameters were obtained: LV flow components (direct, retained, delayed, residual), mean and peak KE values (indexed to instantaneous LV volume), mean and peak vorticity values, and diastolic vortex ring properties (position, orientation, shape). Results The MI patients demonstrated a significantly larger amount of delayed and residual flow, and a smaller amount of direct flow compared to controls (p = 0.02, p = 0.03, and p < 0.001, respectively). The MI-LVT(+) patients demonstrated numerically increased residual flow and reduced retained and direct flow in comparison to MI-LVT(-) patients. Systolic mean and peak LV blood flow KE values were significantly lower in MI patients compared to controls (p = 0.04, p = 0.03, respectively). Overall, the mean and peak LV vorticity values were significantly lower in MI patients compared to controls. The mean vorticity at the basal level was significantly higher in MI-LVT(+) than in MI-LVT(-) patients (p < 0.01). The vortex ring core during E-wave in MI-LVT(-) group was located closer to the mitral annulus and in a less tilted orientation to the LV compared to MI-LVT(+) group (p = 0.05, p < 0.01, respectively). Conclusion Chronic MI patients with LVT express a different distribution of LV flow components, irregular vorticity vector fields, and altered diastolic vortex ring geometric properties as assessed by 4D flow CMR. Larger prospective studies are warranted to further evaluate these initial observations.

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Xiaodan Zhao ◽  
Liwei Hu ◽  
Shuang Leng ◽  
Ru-San Tan ◽  
Ping Chai ◽  
...  

Abstract Background Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows quantification of biventricular blood flow by flow components and kinetic energy (KE) analyses. However, it remains unclear whether 4D flow parameters can predict cardiopulmonary exercise testing (CPET) as a clinical outcome in repaired tetralogy of Fallot (rTOF). Current study aimed to (1) compare 4D flow CMR parameters in rTOF with age- and gender-matched healthy controls, (2) investigate associations of 4D flow parameters with functional and volumetric right ventricular (RV) remodelling markers, and CPET outcome. Methods Sixty-three rTOF patients (14 paediatric, 49 adult; 30 ± 15 years; 29 M) and 63 age- and gender-matched healthy controls (14 paediatric, 49 adult; 31 ± 15 years) were prospectively recruited at four centers. All underwent cine and 4D flow CMR, and all adults performed standardized CPET same day or within one week of CMR. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes. Four flow components were analyzed: direct flow, retained inflow, delayed ejection flow and residual volume. Additionally, three phasic KE parameters normalized to end-diastolic volume (KEiEDV), were analyzed for both LV and RV: peak systolic, average systolic and peak E-wave. Results In comparisons of rTOF vs. healthy controls, median LV retained inflow (18% vs. 16%, P = 0.005) and median peak E-wave KEiEDV (34.9 µJ/ml vs. 29.2 µJ/ml, P = 0.006) were higher in rTOF; median RV direct flow was lower in rTOF (25% vs. 35%, P < 0.001); median RV delayed ejection flow (21% vs. 17%, P < 0.001) and residual volume (39% vs. 31%, P < 0.001) were both greater in rTOF. RV KEiEDV parameters were all higher in rTOF than healthy controls (all P < 0.001). On multivariate analysis, RV direct flow was an independent predictor of RV function and CPET outcome. RV direct flow and RV peak E-wave KEiEDV were independent predictors of RV remodelling index. Conclusions In this multi-scanner multicenter 4D flow CMR study, reduced RV direct flow was independently associated with RV dysfunction, remodelling and, to a lesser extent, exercise intolerance in rTOF patients. This supports its utility as an imaging parameter for monitoring disease progression and therapeutic response in rTOF. Clinical Trial Registrationhttps://www.clinicaltrials.gov. Unique identifier: NCT03217240.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Riva ◽  
A Camporeale ◽  
F Sturla ◽  
S Pica ◽  
L Tondi ◽  
...  

Abstract Background Ischemic cardiomyopathy (ICM) is often associated with negative LV remodelling after myocardial infarction, sometimes resulting in impaired LV function and dilation (iDCM). 4D Flow CMR has been recently exploited to assess intracardiac hemodynamic changes in presence of LV remodelling. Purpose To quantify 4D Flow intracardiac kinetic energy (KE) and viscous energy loss (EL) and investigate their relation with LV dysfunction and remodelling. Methods Patients with prior anterior myocardial infarction underwent a CMR study with 4D Flow sequences acquisition; they were divided into ICM (n=10) and iDCM (n=10, EDV&gt;208 ml and EF&lt;40%). 10 controls were used for comparison. LV was semi-automatically segmented using short axis CMR stacks and co-registered with 4D Flow. Global KE and EL were computed over the cardiac cycle. NT-proBNP measurements were correlated with average and peak values, during systole and diastole. Results Both LV volume and EF significantly differ (P&lt;0.0001) between iDCM (EDV=294±56 ml, EF=24±8%), ICM (EDV=181±32 ml, EF=34±6%) and controls (EDV=124±29 ml, EF=72±5%). If compared to controls, both ICM and iDCM showed significantly lower KE (P≤0.0008); though lower than controls, EL was higher in iDCM than ICM. Within the iDCM subgroup, diastolic mean KE and peak EL reported good inverse correlation with NT-proBNP (r=−0.75 and r=−0.69, respectively). EL indexed (ELI) to average KE during systole was higher in the entire ischemic group as compared to controls (ELI(ischemic) = 0.17 vs. ELI(controls) = 0.10, P=0.0054). Conclusions 4D Flow analyses effectively mapped post-ischemic LV energetic changes, highlighting the disproportionate intraventricular EL relative to produced KE; preliminary good correlation between LV energetic changes and NT-proBNP will deserve further investigation in order to contribute to early detection of heart failure. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Ministry of Health


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ryan J. Pewowaruk ◽  
Gregory P. Barton ◽  
Cody Johnson ◽  
J. Carter Ralphe ◽  
Christopher J. Francois ◽  
...  

Abstract Background Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. Methods 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. Results 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). Conclusion These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
H Ben-Arzi ◽  
A Das ◽  
C Kelly ◽  
RJ Van Der Geest ◽  
A Chowdhary ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): British Heart Foundation HRUK Background. Four-dimensional flow (4D flow) cardiovascular magnetic resonance (CMR) imaging provides quantification of intra-cavity left ventricular (LV) flow kinetic energy (KE) parameters in three dimensions. Myocardial infarction (MI) is known to cause acute alterations in intra-cardiac blood flow but assessments of longitudinal changes are lacking. Purpose. Assess longitudinal changes in LV flow post ST-elevation myocardial infarction (STEMI). Method. Twenty acutely reperfused STEMI patients (13 men, 7 women, mean age 54 ± 9 years) underwent 3T CMR acutely (within 5-7 days) and 3 months post-MI.  CMR protocol included functional imaging, late gadolinium enhancement and 4D flow. Using Q-MASS, LV KE parameters were derived and indexed to LV end-diastolic volume (LVKEiEDV). Based on acute ejection fraction (EF), patients were grouped as follows: preserved (pEF) EF &gt;50%, reduced (rEF) EF &lt;50% including mild (rEF= 40-49%), moderate to severe (EF &lt;40%) impairment.  Results. Out of 20 patients, 13 had rEF acutely (7 mild rEF, 6 moderate to severe rEF). Acute LVKEiEDV parameters varied significantly between pEF and rEF (Table). At 3 months, pEF and mild rEF patients showed a significant (P &lt; 0.05) reduction in average, systolic and peak-A wave LVKEiEDV. Mild rEF patients also had significant (P &lt; 0.05) reduction in minimal and peak-E wave LVKEiEDV. However in patients with moderate to severe rEF in the acute scan, there were no significant change by 3 months (Figure). Conclusion. Following MI, 4D flow LVKE derived biomarkers significantly decreased over time in pEF and mild rEF groups but not in moderate to severe rEF group. 4D flow assessment might provide incremental prognostic value beyond EF assessment alone. Table pEF (n = 7) rEF (n = 13) V1 V2 P-value V1 V2 P-value EF(%) 56 ± 5 55 ± 4 0.40 41 ± 7 47 ± 9 0.01 Infarct Size(%) 31 ± 20 15 ± 9 0.04 18 ± 13† 16 ± 11 0.41 LV KEiEDV parameters Average(µJ/ml) 9 ± 2 7 ± 2 0.02 10 ± 3† 8 ± 3 0.01 Minimal(µJ/ml) 1 ± 0.6 1 ± 0.5 0.46 1.3 ± 0.5 1 ± 0.6 0.03 Systolic(µJ/ml) 10 ± 4 7 ± 2 &lt;0.01 12 ± 4† 7 ± 3 &lt;0.01 Diastolic(µJ/ml) 8 ± 3 7 ± 2 0.13 9 ± 3 8 ± 3 0.09 Peak-E wave(µJ/ml) 22 ± 9 23 ± 8 0.44 20 ± 7 18 ± 10 0.23 Peak-A wave(µJ/ml) 18 ± 10 11 ± 4 0.04 17 ± 9 14 ± 7 0.02 †P &lt; 0.05 V1 comparison between pEF and rEF Abstract Figure


2018 ◽  
Vol 20 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Pankaj Garg ◽  
Rob J van der Geest ◽  
Peter P Swoboda ◽  
Saul Crandon ◽  
Graham J Fent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document