2348Novel direct thrombin inhibitor achieves superior antithrombotic effect with lower bleeding risk than heparin or bivalirudin

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Y Koh ◽  
N Shih ◽  
E J E Leong ◽  
F S Amran ◽  
A W L Li ◽  
...  

Abstract Background We have isolated, variegin, a unique direct thrombin inhibitor (DTI) from tropical bont tick Amblyomma variegatum. Variegin inhibits thrombin active site and exosite-1 with an inhibitory constant of 0.3 nM (9-fold better than bivalirudin). It is also >5 orders of magnitude more selective for thrombin than other blood coagulation serine proteases. Variegin has a plasma half-life of 50 minutes (compared with bivalirudin 25 minutes and heparin ∼ hours). Purpose We aimed to develop variegin into a parenteral anticoagulant for percutaneous coronary intervention (PCI) and tested variegin in several pre-clinical models. Methods In rats, variegin was tested for efficacy (anticoagulation intensity) in a FeCl3-induced carotid artery thrombosis model while safety (bleeding risk) was tested in a tail incision model that recapitulated the time-frame of PCI (∼1 hour) in humans (time-response model). In pigs, an extracorporeal circuit with modified Badimon chambers containing coronary stents was used to assess efficacy, while bleeding risk was evaluated through needle-induced injury on a superficial ear vein, with or without concurrent administration of aspirin and ticagrelor (DAPT). Unfractionated heparin (UFH) and bivalirudin at dosages recommended for PCI were used as references. Ex vivo clotting analyses including thrombin generation test, rotational thromboelastometry, activated partial thromboplastin time and clot waveform analysis were performed in human blood spiked with DAPT and the three anticoagulants. Results In the rat time-response model, a single variegin bolus conferred better antithrombotic effect than a continuous infusion of bivalirudin and more rapid recovery of haemostasis than a single bolus of heparin. In the porcine ex vivo model, without DAPT, UFH, bivalirudin and 1 mg/kg variegin reduced stent thrombus by 35% (P<0.001), 60% (P<0.0001), and 80% (P<0.0001), compared with saline, respectively. In the presence of DAPT, UFH, bivalirudin and only 0.1 mg/kg of variegin (10-fold lowered dose) reduced stent thrombus by 65% (P<0.01), 75% (P<0.001), and 87% (P<0.0001), respectively (Fig. 1A). However, in the presence of DAPT, standard-dose UFH and bivalirudin prolonged bleeding times far longer than low-dose variegin (Fig. 1B). In human platelet rich plasma treated with DAPT, UFH showed a much more precipitous decline in thrombin generation potential than variegin (Fig. 1C). Dose response curves for inhibition of thrombin generation are also steeper in UFH and bivalirudin than in variegin, suggesting larger safety dose margin for variegin (Fig. 1D). These observations potentially account for the better preservation of haemostasis with low-dose variegin in combination with DAPT. Figure 1 Conclusion In the presence of aspirin and ticagrelor, a low dose of variegin, a novel direct thrombin inhibitor, achieved superior antithrombotic effect with significantly lower bleeding risk than heparin or bivalirudin in pre-clinical PCI models.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1866-1866
Author(s):  
Thomas B. McClanahan ◽  
Sangita M. Baxi ◽  
Liguo Chi ◽  
Tawny Dahring ◽  
Weston R. Gould ◽  
...  

Abstract Several compounds currently in development for the treatment of thrombotic disorders demonstrate high levels of specificity for single targets of the blood coagulation cascade such as factor Xa and thrombin. However, development of a single molecule dual inhibitor against factor Xa and thrombin may expand the efficacy to safety ratio of treatment options for arterial and venous thrombosis. The objective of this study was to determine if simultaneous administration of PD 0313052, a selective Xa inhibitor and argatroban, a direct thrombin inhibitor, would lead to a synergistic antithrombotic effect in a rabbit AV shunt model of thrombosis. Intravenous administration of PD 0313052 alone at doses of 0.1, 0.3, and 1.0 mg/kg/min resulted in thrombus weight (TW) reductions of 11±3, 25±10 and 67±7 % compared to the vehicle group. Argatroban at 1, 3 and 10 mg/kg/min reduced TW 16±13, 47±10 and 75±6 %. When PD 0313052 was administered at 0.1 mg/kg/min in combination with argatroban at 1, 3 or 10 mg/kg/min TW was reduced 50±7, 60±7 and 82±9 %. Likewise, argatroban at 1 mg/kg/min combined with 0.1, 0.3 or 1mg/kg/min of PD 0313052 resulted in TW reductions of 56±9, 60±9 and 84±5 %, respectively. At the lowest combined doses of PD 0313052 and argatroban there was no change in bleeding time relative to the additive fold-increases from each drug alone. The EC50 of intravenously administered PD 0313052 and argatroban was 67±23 and 178±58 ng/ml, respectively. When the drugs were combined the EC50 was reduced to 12±6 ng/ml with the PD 0313052/argatroban combination and to 83±29 ng/ml with the argatroban/PD 0313052 combination. A synergistic effect was also observed in an ex vivo assay of thrombin generation (TG). Predicted additive inhibition of TG based on the individual effects of each compound was −9±7, 9±2 and 29±7 % compared to 10±5, 32±5 and 55±3 % with the 313052/argatroban combination. The predicted effects of the argatroban/PD 0313052 combination was −9±7, 1±7 and 16±9 % compared to the actual inhibition of 5±3, 14±5 and 31±7 %. These results demonstrate a significant synergistic antithrombotic effect by combining low doses of a factor Xa and a thrombin inhibitor and support the hypothesis that development of a single molecule inhibitor against different hemostatic targets may offer greater efficacy in the prevention and treatment of venous and arterial thrombosis.


2001 ◽  
Vol 85 (02) ◽  
pp. 221-225 ◽  
Author(s):  
Anetta Undas ◽  
Robert Undas ◽  
Jan Brożek ◽  
Andrzej Szczeklik ◽  
Jacek Musiał

SummaryAspirin and statins are beneficial in coronary heart disease across a broad range of cholesterol levels. We assessed the effects of low-dose aspirin (75 mg daily) on thrombin generation in patients with coronary heart disease and average blood cholesterol levels. We also investigated whether in patients with borderline-high cholesterol level who have been already taking aspirin, additional treatment with simvastatin would affect thrombin generation.Seven-day treatment with low-dose aspirin decreased thrombin generation ex vivo only in patients with total cholesterol 5.2 mmol/L. In patients with higher cholesterol levels aspirin had no effect. In these patients, already taking low-dose aspirin, additional three-month simvastatin treatment resulted in a reduction of thrombin generation. This demonstrates that low-dose aspirin depresses thrombin generation only in subjects with desirable blood cholesterol levels, while in others, with borderline-high cholesterol, thrombin formation is being reduced following the addition of simvastatin.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4049-4049
Author(s):  
Margareta Elg ◽  
Helen Zachrisson

Abstract AR-H067637 is a direct thrombin inhibitor derived in vivo from the orally available prodrug AZD0837. AR-H067637 is a reversible and selective direct thrombin inhibitor, which has an inhibition constant, Ki, of 2–4 nmol/L against human alpha-thrombin. During early development of a new anticoagulant drug, data on antithrombotic doses from animal studies may help guide selection of the dose to use in initial human studies. In the present study, using a flow chamber model developed by Badimon and colleagues (Badimon L, et al. J Lab Clin Med1987;110:706–718), the antithrombotic effect of AR-H067637 was evaluated using pig aorta and human whole blood. Following collection of informed consent, blood was taken from 11 healthy subjects into citrate-containing (10%, 0.109 M) tubes. Subjects were not permitted to receive medication for 7 days prior to blood collection. Blood was also collected in EDTA-containing tubes for cell counting. Denuded pig aorta pieces were used as the thrombogenic surface in the flow chamber. AR-H067637 was added to the blood at final blood concentrations ranging from 0.01 to 10 μmol/L, corresponding to plasma concentrations of 0.02 to 16 μmol/L. The blood was drawn for 5 minutes through the flow chamber with a shear of 220−s which is comparable with venous flow rate. The thrombus formed inside the chamber was degraded by plasmin, and platelets attached to the thrombus were lysed. The degradation product of fibrin, D-dimer, and the expression of the platelet cell adhesion molecule P-selectin were used as indirect measures of fibrin and platelet content in the thrombus, respectively. The anticoagulant effect of AR-H067637 was determined using the activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. When using D-dimer levels as a measure of thrombus size, 25%, 50% and 75% thrombus inhibition was estimated to occur at AR-H067637 plasma concentrations of 0.21, 0.48 and 1.32 μmol/L, respectively. A significant inhibition of P-selectin expression by AR-H067637 was seen only at the highest concentration. APTT and PT were shown to be prolonged in a concentration-dependent manner; 50% inhibition of thrombus formation on the pig aorta was obtained at 1.8 and 1.2 times prolongations of APTT and PT, respectively. Hematological parameters such as WBC, RBC, HCT and platelets were all within the normal range. In conclusion, this study demonstrates that AR-H067637, the active metabolite of the oral prodrug AZD0837, has antithrombotic effects, causing concentration-dependent inhibition of thrombus formation measured as fibrin degradation products on the denuded pig aorta. Only a small effect at the highest concentration was observed on inhibition of platelet content in the thrombus, measured by P-selectin. This is in accordance with thrombin being a very potent platelet agonist. Therefore, higher concentrations of a thrombin inhibitor are needed to totally prevent platelet activation and aggregation, compared to those needed to prevent fibrin formation. APTT and PT prolongation correlated with the antithrombotic effect of AR-H067637 with &gt;75% inhibition of fibrin formation at APTT and PT prolongations of 2.4 and 1.7, respectively.


2002 ◽  
Vol 87 (02) ◽  
pp. 300-305 ◽  
Author(s):  
Ulf Eriksson ◽  
Christer Mattsson ◽  
Michael Wolzt ◽  
Lars Frison ◽  
Gunnar Fager ◽  
...  

SummaryXimelagatran, an oral direct thrombin inhibitor, whose active form is melagatran, was studied using a model of thrombin generation in humans. Healthy male volunteers (18 per group) received ximelagatran (60 mg p.o.), dalteparin (120 IU/kg s.c.) or a control (water p.o.). Shed blood, collected after incision of the forearm with standardised bleeding time devices at pre-dose, and at 2, 4 and 10 h post-dosing, was analysed for markers of thrombin generation. Statistically significant reductions (p < 0.05) in levels of prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin complex (TAT) in shed blood were detected at 2 and 4 h post-dosing in both the ximelagatran and dalteparin groups. Shed blood F1+2 and TAT levels had returned to pre-dose levels at 10 h post-dosing. Using a shed blood model, we demonstrate that the reversible thrombin inhibitor melagatran and, therefore, oral administration of ximelagatran, inhibits thrombin generation in humans after acute activation of coagulation.


2007 ◽  
Vol 98 (07) ◽  
pp. 155-162 ◽  
Author(s):  
Jean-Marie Stassen ◽  
Henning Priepke ◽  
Uwe Joerg Ries ◽  
Norbert Hauel ◽  
Wolfgang Wienen

SummaryDabigatran is a reversible and selective, direct thrombin inhibitor (DTI) undergoing advanced clinical development as its orally active prodrug, dabigatran etexilate.This study set out to determine the molecular potency and anticoagulant efficacy of dabigatran and its prodrug dabigatran etexilate.This was achieved through enzyme inhibition and selectivity analyses, surface plasmon resonance studies, platelet aggregation, thrombin generation and clotting assays in vitro and ex vivo.These studies demonstrated that dabigatran selectively and reversibly inhibited human thrombin (Ki: 4.5 nM) as well as thrombin-induced platelet aggregation (IC50: 10 nM), while showing no inhibitory effect on other platelet-stimulating agents.Thrombin generation in platelet-poor plasma (PPP), measured as the endogenous thrombin potential (ETP) was inhibited concentration-dependently (IC50: 0.56 μM). Dabigatran demonstrated concentration-dependent anticoagulant effects in various species in vitro, doubling the activated partial thromboplastin time (aPTT), prothrombin time (PT) and ecarin clotting time (ECT) in human PPP at concentrations of 0.23, 0.83 and 0.18 μM, respectively. In vivo, dabigatran prolonged the aPTT dose-dependently after intravenous administration in rats (0.3, 1 and 3 mg/kg) and rhesus monkeys (0.15, 0.3 and 0.6 mg/kg). Dose- and time-dependent anticoagulant effects were observed with dabigatran etexilate administered orally to conscious rats (10, 20 and 50 mg/kg) or rhesus monkeys (1, 2.5 or 5 mg/kg), with maximum effects observed between 30 and 120 min after administration, respectively. These data suggest that dabigatran is a potent, selective thrombin inhibitor and an orally active anticoagulant as the prodrug, dabigatran etexilate.Footnote: Parts of this study were presented at the XVIII Congress of the International Society on Thrombosis and Haemostasis, Paris, July 2001. Thromb Haemost 2001; 86 (Suppl): Abstracts P755, P763.Institution where work was carried out: Boehringer Ingelheim Pharma GmbH &Co KG, 88397 Biberach, Germany.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 914-914 ◽  
Author(s):  
Yoshiyuki Morishima ◽  
Taketoshi Furugohri ◽  
Yoko Shiozaki ◽  
Nobutoshi Sugiyama ◽  
Toshiro Shibano

Abstract Rebound like recurrent thrombotic events are concerns about anticoagulant therapies. Withdrawal of heparins and a direct thrombin inhibitor is reported to be associated with evidence of rebound coagulation phenomenon in patients with coronary artery diseases (Ref 1). Previously we have shown that low-dose administration of a direct thrombin inhibitor, melagatran, enhances coagulation induced by tissue factor (TF) in rats (Ref 2). Objectives: To determine whether anticoagulants enhance thrombin generation in human plasma, and whether the negative-feedback system [thrombin-thrombomodulin (TM)-protein C] contributes to the enhancement. Methods: Thrombin generation in pooled human plasma was assayed by means of the calibrated automated thrombography (CAT) with the thrombinoscope software in vitro. Thrombin generation was induced by 2.5 pM tissue factor (TF) and 4 μM phospholipids. The effects of following anticoagulants were assessed: antithrombin (AT)-independent thrombin inhibitors [melagatran, recombinant hirudin (lepirudin), and active site blocked thrombin (IIai)], AT-dependent anticoagulants (heparin, dalteparin, and fondaparinux), and AT-independent FXa inhibitors (DU-176b and DX-9065a). Results: Melagatran, lepirudin, and IIai increased peak levels of thrombin generation in the presence of 8 nM recombinant human soluble TM. The effects reached maximal at 200 nM of melagatran (2.3-fold), 8.95 nM of lepirudin (1.6-fold), and 405 nM of IIai (2.2-fold). At higher concentrations, melagatran and lepirudin turned to suppress thrombin generation. Heparin, dalteparin, fondaparinux, DU-176b, and DX-9065a did not enhance thrombin generation, just exerted inhibitory effects. In the absence of TM, the enhancement by melagatran of peak thrombin generation was only 1.2-fold, suggesting the significant role of the negative-feedback system in this aggravation of thrombin generation. Since thrombin acts both the pro- and anti-coagulant, the inhibition of the negative-feedback system by these thrombin inhibitors may cause enhancement of thrombin generation. To test this hypothesis, we examined thrombin generation in protein C-deficient plasma. AT-independent thrombin inhibitors failed to enhance thrombin generation in protein C-deficient plasma. Conclusions: These results indicate that AT-independent thrombin inhibitors at low concentrations enhance thrombin generation probably due to suppression of the negative feedback system by inhibiting protein C activation. This in vitro aggravation of thrombin generation may be a possible explanation of hypercoagulation by melagatran in a rat model of TF-induced intravascular coagulation. Furthermore this phenomenon would contribute to clinical rebound like recurrent thrombotic events associated with anticoagulant therapies with these inhibitors. In contrast, AT-independent FXa inhibitors like DU-176b are less prone to induce the rebound because of lack of increase in thrombin generation.


Sign in / Sign up

Export Citation Format

Share Document