Spatial distribution of sediment archaeal and bacterial communities relates to the source of organic matter and hypoxia – a biogeographical study on Lake Remoray (France)

Author(s):  
Vincent Tardy ◽  
David Etienne ◽  
Hélène Masclaux ◽  
Valentin Essert ◽  
Laurent Millet ◽  
...  

Abstract Bottom waters hypoxia spreads in many lakes worldwide causing severe consequences on whole lakes trophic network. Here, we aimed at understanding the origin of organic matter stored in the sediment compartment and the related diversity of sediment microbial communities in a lake with deoxygenated deep water layers. We used a geostatistical approach to map and compare both the variation of organic matter and microbial communities in sediment. Spatialisation of C/N ratio and δ13C signature of sediment organic matter suggested that Lake Remoray was characterized by an algal overproduction which could be related to an excess of nutrient due to the close lake-watershed connectivity. Three spatial patterns were observed for sediment microbial communities after the hypoxic event, each characterized by specific genetic structure, microbial diversity and composition. The relative abundance variation of dominant microbial groups across Lake Remoray such as Cyanobacteria, Gammaproteobacteria, Deltaproteobacteria and Chloroflexi provided us important information on the lake areas where hypoxia occurs. The presence of methanogenic species in the deeper part of the lake suggests important methane production during hypoxia period. Taken together, our results provide an extensive picture of microbial communities' distribution related to quantity and quality of organic matter in a seasonally hypoxic lake.

2015 ◽  
Vol 95 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Kristine M. Haynes ◽  
Michael D. Preston ◽  
James W. McLaughlin ◽  
Kara Webster ◽  
Nathan Basiliko

Haynes, K. M., Preston, M. D., McLaughlin, J. W., Webster, K. and Basiliko, N. 2015. Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. Can. J. Soil Sci. 95: 219–230. Climatic and environmental changes can lead to shifts in the dominant vegetation communities present in northern peatland ecosystems, including from Sphagnum- to vascular-dominated systems. Such shifts in vegetation result in changes to the chemical quality of carbon substrates for soil microbial decomposers, with leaves and roots deposited in the peat surface and subsurface that potentially decompose faster. This study characterized the bacterial and fungal communities present along a nutrient gradient ranging from rich to poor fen peatlands and assessed the metabolic potential of these communities to mineralize a variety of organic matter substrates of varying chemical complexity using substrate-induced respiration (SIR) assays. Distinct microbial communities existed between rich, intermediate and poor fens, but SIR in each of the three sites exhibited the same pattern of carbon mineralization, providing support for the concept of functional redundancy, at least under standardized in vitro conditions. Preferential mineralization of simple organic substrates in the rich fen and complex compounds in the poor fen was not observed. Similarly, no preference was given to “native” organic matter extracts derived from each fen, with microbial communities opting for the most bioavailable substrate. This study suggests that soil bacteria and fungi might be able to respond relatively rapidly to shifts in vegetation communities and subsequent changes in the quality of carbon substrate additions to peatlands associated with environmental and climatic change.


2020 ◽  
Vol 9 (30) ◽  
Author(s):  
He Fu ◽  
Christa B. Smith ◽  
Shalabh Sharma ◽  
Mary Ann Moran

ABSTRACT We report 11 bacterial draft genome sequences and 38 metagenome-assembled genomes (MAGs) from marine phytoplankton exometabolite enrichments. The genomes and MAGs represent marine bacteria adapted to the metabolite environment of phycospheres, organic matter-rich regions surrounding phytoplankton cells, and are useful for exploring functional and taxonomic attributes of phytoplankton-associated bacterial communities.


Author(s):  
Roxana Vidican ◽  
Vlad Stoian ◽  
Ioan Rotar ◽  
Florin Pacurar ◽  
Susana Sfechiș

Microbial communities in agricultural ecosystems are characterized by a strong dynamic and radical change due to technological inputs applied. Corn is cultivated on large areas with high requirements for nutrients and an increased potential for activation of specific microbial groups. The aim of this study was to assess the unilateral and synergic effect of zeolite and mineral fertilizers on the development and transformation of microbial functional groups in the rhizosphere of corn. Physiological profile assessment of microbial communities has been carried out on the basis of substrate induced respiration, monitored over a period of 6 hours of incubation. The amount of CO2 registered in Microresp plates represents the activity of functional groups in decomposition of each type of substrate applied. Characteristic groups of microorganisms in maize rhizosphere are capable of decomposing acids: citric, L-malic, oxalic and α-Ketoglutaric. These substrates indicate the presence of high concentrations of organic matter in soil and the existence of a biological crust on the surface (citric acid), respectively the existence of powerful processes for the decomposition of organic material by actinomycetes (α-Ketoglutaric acid). The highest microbial activities were observed in groups of bacteria involved in processes of plant growth promotion and microbial groups with an important role in the processes of denitrification (oxalic acid). For the application of urea a triple value of activity of this type of microflora is observed. Functional groups codominant in soils cultivated with corn are specialized in efficient degradation of organic matter and biological crust, zeolite providing the complex substrate necessary for the development of these microorganisms.


2015 ◽  
Vol 27 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Laís Américo Soares ◽  
André Cordeiro Alves Dos Santos ◽  
Iolanda Cristina Silveira Duarte ◽  
Emiliana Manesco Romagnoli ◽  
Maria do Carmo Calijuri

Abstract Aim: Microbial communities play a central role in environmental process such as organic matter mineralization and the nutrient cycling process in aquatic ecosystems. Despite their ecological importance, variability of the structure of archaeal and bacterial communities in freshwater remains understudied. Methods In the present study we investigated the richness and density of archaea and bacteria in the water column and sediments of the Itupararanga Reservoir. We also evaluated the relationship between the communities and the biotic and abiotic characteristics. Samples were taken at five depths in the water column next to the dam and three depths next to the reservoir entrance. Results PCR-DGGE evaluation of the archaeal and bacterial communities showed that both were present in the water column, even in oxygenated conditions. Conclusions The density of the bacteria (qPCR) was greater than that of the archaea, a result of the higher metabolic plasticity of bacteria compared with archaea.


2021 ◽  
Author(s):  
Sara Winterfeldt ◽  
Ainara Leizeaga ◽  
Johannes Rousk

<p>Climate change results in more frequent and intensified drought and rainfall events. The environment exerts a strong control on microbial communities, where drying and rewetting disturbances act as an additional stress that can alter soil processes driving the carbon cycle. Therefore, understanding the environmental control of microbial responses to drying and rewetting events is important to understand the microbial mechanisms controlling the soil C cycle. This study investigated how climate along with soil physiochemical factors affected microbial responses to drying and rewetting. A total of 40 soils across Europe presenting a comprehensive gradient from arctic (N Sweden) to southern Mediterranean (S Greece) climates and wide range of soil properties (SOM: 2-82%, pH: 3.9-7.4, Clay: 8-79%) were exposed to four days of drying followed by rewetting. The microbial growth and respiration responses after rewetting were monitored in high time resolution during 32h. The recovery time of bacterial growth to rates of 50% in undisturbed soil was used as a measure of how resilient microbial communities were to drying and rewetting.</p><p> </p><p>The bacterial recovery time after rewetting ranged between 0.6-40h. We found that soils in arid climates had faster bacterial recovery times, suggesting that bacterial communities were more resilient and better adapted to drying and rewetting than those in humid climates, rendering microbial C-use during drying and rewetting more efficient. Furthermore, pH and soil organic matter also had pronounced effects on the resilience of bacterial growth, where acid pH and high soil organic matter resulted in bacterial communities that were slower to recover. In contrast, clay did not have an influence on the resilience of bacterial growth. Our findings suggest that both climate and soil properties are important when determine how soil microbial communities will respond to a drying and rewetting disturbance.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


2021 ◽  
pp. 108191
Author(s):  
Morgan Luce McLeod ◽  
Lorinda Bullington ◽  
Cory C. Cleveland ◽  
Johannes Rousk ◽  
Ylva Lekberg

Sign in / Sign up

Export Citation Format

Share Document