scholarly journals 16S rRNA amplicon sequencing for epidemiological surveys of bacteria in wildlife: the importance of cleaning post-sequencing data before estimating positivity, prevalence and co-infection

2016 ◽  
Author(s):  
Maxime Galan ◽  
Maria Razzauti ◽  
Emilie Bard ◽  
Maria Bernard ◽  
Carine Brouat ◽  
...  

SummaryHuman impact on natural habitats is increasing the complexity of human-wildlife interfaces and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents collected from 24 villages in Senegal, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis and 221 Mastomys erythroleucus. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus and Orientia. The last five of these genera have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable for continuous pathogen surveillance in the context of disease monitoring programs.

mSystems ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Maxime Galan ◽  
Maria Razzauti ◽  
Emilie Bard ◽  
Maria Bernard ◽  
Carine Brouat ◽  
...  

ABSTRACT Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses. The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable to continuous pathogen surveillance in the context of disease-monitoring programs. IMPORTANCE Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sukjung Choi ◽  
Jongsuk Chung ◽  
Mi-La Cho ◽  
Donghyun Park ◽  
Sun Shim Choi

Abstract Background Comparing the microbiome compositions obtained under different physiological conditions has frequently been attempted in recent years to understand the functional influence of microbiomes in the occurrence of various human diseases. Methods In the present work, we analyzed 102 microbiome datasets containing tumor- and normal tissue-derived microbiomes obtained from a total of 51 Korean colorectal cancer (CRC) patients using 16S rRNA amplicon sequencing. Two types of comparisons were used: ‘normal versus (vs.) tumor’ comparison and ‘recurrent vs. nonrecurrent’ comparison, for which the prognosis of patients was retrospectively determined. Results As a result, we observed that in the ‘normal vs. tumor’ comparison, three phyla, Firmicutes, Actinobacteria, and Bacteroidetes, were more abundant in normal tissues, whereas some pathogenic bacteria, including Fusobacterium nucleatum and Bacteroides fragilis, were more abundant in tumor tissues. We also found that bacteria with metabolic pathways related to the production of bacterial motility proteins or bile acid secretion were more enriched in tumor tissues. In addition, the amount of these two pathogenic bacteria was positively correlated with the expression levels of host genes involved in the cell cycle and cell proliferation, confirming the association of microbiomes with tumorigenic pathway genes in the host. Surprisingly, in the ‘recurrent vs. nonrecurrent’ comparison, we observed that these two pathogenic bacteria were more abundant in the patients without recurrence than in the patients with recurrence. The same conclusion was drawn in the analysis of both normal and tumor-derived microbiomes. Conclusions Taken together, it seems that understanding the composition of tissue microbiomes is useful for predicting the prognosis of CRC patients.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2414
Author(s):  
Laura Sanjulián ◽  
Alexandre Lamas ◽  
Rocío Barreiro ◽  
Alberto Cepeda ◽  
Cristina A. Fente ◽  
...  

The objective of this work was to characterize the microbiota of breast milk in healthy Spanish mothers and to investigate the effects of lactation time on its diversity. A total of ninety-nine human milk samples were collected from healthy Spanish women and were assessed by means of next-generation sequencing of 16S rRNA amplicons and by qPCR. Firmicutes was the most abundant phylum, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. Accordingly, Streptococcus was the most abundant genus. Lactation time showed a strong influence in milk microbiota, positively correlating with Actinobacteria and Bacteroidetes, while Firmicutes was relatively constant over lactation. 16S rRNA amplicon sequencing showed that the highest alpha-diversity was found in samples of prolonged lactation, along with wider differences between individuals. As for milk nutrients, calcium, magnesium, and selenium levels were potentially associated with Streptococcus and Staphylococcus abundance. Additionally, Proteobacteria was positively correlated with docosahexaenoic acid (DHA) levels in breast milk, and Staphylococcus with conjugated linoleic acid. Conversely, Streptococcus and trans-palmitoleic acid showed a negative association. Other factors such as maternal body mass index or diet also showed an influence on the structure of these microbial communities. Overall, human milk in Spanish mothers appeared to be a complex niche shaped by host factors and by its own nutrients, increasing in diversity over time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin M. Singleton ◽  
Francesca Petriglieri ◽  
Jannie M. Kristensen ◽  
Rasmus H. Kirkegaard ◽  
Thomas Y. Michaelsen ◽  
...  

AbstractMicroorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.


Helicobacter ◽  
2021 ◽  
Author(s):  
Boldbaatar Gantuya ◽  
Hashem B. El Serag ◽  
Batsaikhan Saruuljavkhlan ◽  
Dashdorj Azzaya ◽  
Takashi Matsumoto ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 1525
Author(s):  
Can Akpolat ◽  
Ana Beatriz Fernández ◽  
Pinar Caglayan ◽  
Baris Calli ◽  
Meral Birbir ◽  
...  

Prokaryotic communities and physico-chemical characteristics of 30 brine samples from the thalassohaline Tuz Lake (Salt Lake), Deep Zone, Kayacik, Kaldirim, and Yavsan salterns (Turkey) were analyzed using 16S rRNA amplicon sequencing and standard methods, respectively. Archaea (98.41% of reads) was found to dominate in these habitats in contrast to the domain Bacteria (1.38% of reads). Representatives of the phylum Euryarchaeota were detected as the most predominant, while 59.48% and 1.32% of reads, respectively, were assigned to 18 archaeal genera, 19 bacterial genera, 10 archaeal genera, and one bacterial genus that were determined to be present, with more than 1% sequences in the samples. They were the archaeal genera Haloquadratum, Haloarcula, Halorhabdus, Natronomonas, Halosimplex, Halomicrobium, Halorubrum, Halonotius, Halolamina, Halobacterium, and Salinibacter within the domain Bacteria. The genera Haloquadratum and Halorhabdus were found in all sampling sites. While Haloquadratum, Haloarcula, and Halorhabdus were the most abundant genera, two uncultured Tuz Lake Halobacteria (TLHs) 1 and 2 were detected in high abundance, and an additional uncultured haloarchaeal TLH-3 was found as a minor abundant uncultured taxon. Their future isolation in pure culture would permit us to expand our knowledge on hypersaline thalassohaline habitats, as well as their ecological role and biomedical and biotechnological potential applications.


Author(s):  
Henrik Christensen ◽  
Anna Jasmine Andersson ◽  
Steffen Lynge Jørgensen ◽  
Josef Korbinian Vogt

2017 ◽  
Author(s):  
Jon G Sanders ◽  
Piotr Lukasik ◽  
Megan E Frederickson ◽  
Jacob A Russell ◽  
Ryuichi Koga ◽  
...  

AbstractAbundance is a key parameter in microbial ecology, and important to estimates of potential metabolite flux, impacts of dispersal, and sensitivity of samples to technical biases such as laboratory contamination. However, modern amplicon-based sequencing techniques by themselves typically provide no information about the absolute abundance of microbes. Here, we use fluorescence microscopy and quantitative PCR as independent estimates of microbial abundance to test the hypothesis that microbial symbionts have enabled ants to dominate tropical rainforest canopies by facilitating herbivorous diets, and compare these methods to microbial diversity profiles from 16S rRNA amplicon sequencing. Through a systematic survey of ants from a lowland tropical forest, we show that the density of gut microbiota varies across several orders of magnitude among ant lineages, with median individuals from many genera only marginally above detection limits. Supporting the hypothesis that microbial symbiosis is important to dominance in the canopy, we find that the abundance of gut bacteria is positively correlated with stable isotope proxies of herbivory among canopy-dwelling ants, but not among ground-dwelling ants. Notably, these broad findings are much more evident in the quantitative data than in the 16S rRNA sequencing data. Our results help to resolve a longstanding question in tropical rainforest ecology, and have broad implications for the interpretation of sequence-based surveys of microbial diversity.


2020 ◽  
Author(s):  
Kimothy L Smith ◽  
Howard A Shuman ◽  
Douglas Findeisen

AbstractWe conducted two studies of water samples from buildings with normal occupancy and water usage compared to water from buildings that were unoccupied with little or no water usage due to the COVID-19 shutdown. Study 1 had 52 water samples obtained ad hoc from buildings in four metropolitan locations in different states in the US and a range of building types. Study 2 had 36 water samples obtained from two buildings in one metropolitan location with matched water sample types. One of the buildings had been continuously occupied, and the other substantially vacant for approximately 3 months. All water samples were analyzed using 16S rRNA amplicon sequencing with a MinION from Oxford Nanopore Technologies. More than 127 genera of bacteria were identified, including genera with members that are known to include more than 50 putative frank and opportunistic pathogens. While specific results varied among sample locations, 16S rRNA amplicon abundance and the diversity of bacteria were higher in water samples from unoccupied buildings than normally occupied buildings as was the abundance of sequenced amplicons of genera known to include pathogenic bacterial members. In both studies Legionella amplicon abundance was relatively small compared to the abundance of the other bacteria in the samples. Indeed, when present, the relative abundance of Legionella amplicons was lower in samples from unoccupied buildings. Legionella did not predominate in any of the water samples and were found, on average, in 9.6% of samples in Study 1 and 8.3% of samples in Study 2.SynopsisComparison of microbial community composition in the plumbing of occupied and unoccupied buildings during the COVID-19 pandemic shutdown.


Sign in / Sign up

Export Citation Format

Share Document