scholarly journals Long-term effects of liming on needles, soil properties, and soil water in a Sitka spruce stand on deep peat

2002 ◽  
Vol 75 (5) ◽  
pp. 553-567 ◽  
Author(s):  
M. Kakei
2000 ◽  
Vol 40 (1) ◽  
pp. 37 ◽  
Author(s):  
S. J. Lolicato

Fortnightly soil water content measurements to a depth of 2.1 m under 4 cocksfoot cultivars, 2 phalaris cultivars, 2 lucerne cultivars and 1 Lotus corniculatus cultivar were used to compare soil profile drying and to define seasonal patterns of plant water use of the species over a 3-year period, on a duplex soil. Cultivars were also selected, within species groups, for varying seasonal growth patterns to assess this influence on soil water dynamics and growth. Over the 3-year period, treatments with the highest and lowest measures of profile soil water content were used to derive and compare values of maximum plant extractable water. Plots were maintained for a further 3 years, after which soil water content measurements in autumn were used to assess long-term effects of the treatments. The effect of seasonal growth patterns within a species was negligible; however, there were significant differences between species. Twenty-one months after pasture establishment, lucerne alone had a drying effect at 2.0 m depth and subsequently it consistently showed profiles with the lowest soil water content. Maximum plant extractable water was greatest for lucerne (230 mm), followed by phalaris (210 mm), Lotus corniculatus (200 mm) and cocksfoot (170 mm). Profiles with the lowest soil water content were associated with greater herbage growth and greater depths of water extraction. The soil water deficits developed by the treatments in autumn of the fourth year were similar to those measured in autumn of the seventh year, implying that a species-dependant equilibrium had been reached. Long-term rainfall data is used to calculate the probabilities of recharge occurring when rainfall exceeds maximum potential deficits for the different pasture species.


2008 ◽  
Vol 72 (3) ◽  
pp. 677-682 ◽  
Author(s):  
R. L. Baumhardt ◽  
O. R. Jones ◽  
R. C. Schwartz

Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 59
Author(s):  
Peter Rwibasira ◽  
Francois Xavier Naramabuye ◽  
Donat Nsabimana ◽  
Monique Carnol

Understanding the long-term effects of tree species on soil properties is crucial for the development of forest restoration policies in relation to the choice of species that meet both environmental and local livelihood needs. This study was performed in the Arboretum of Ruhande, Southern Rwanda, where monocultures of 148 deciduous and 56 conifer species have been established in 0.25 ha replicated plots from 1933 onwards. We investigated the effects of six exotic and two native tree species planted in monoculture plots and native species mixed within one self-regenerated plot on soil properties in two layers (0–5 cm and 5–10 cm depth). We measured general soil properties (pH, SOM, exchangeable base cations) and water-soluble C and N as a proxy for soil functioning. Changes in soil properties were observed in the upper soil layer for all tree species. Planting Eucalyptus species caused soil acidification, whereas soil exchangeable cations and pH were higher under native species (Entandrophragma excelsum and Polyschias fulva) and mixed native species. The effects of tree species were more pronounced for hot water-extractable C and N than for other soil properties. Their analyses could be used for detecting changes in soil functioning linked to vegetation types.


2019 ◽  
Author(s):  
Jannis Groh ◽  
Jan Vanderborght ◽  
Thomas Pütz ◽  
Hans-Jörg Vogel ◽  
Ralf Gründling ◽  
...  

Abstract. Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS) which in turn affects crop water uptake, crop yield, water use efficiency, grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the response of key variables in four different soils and for two different climates in Germany with different aridity index: 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier climate (range: 1.19 to 1.77), by using high-precision weighable lysimeters. According to a “space-for-time” concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2018. Evapotranspiration was lower for the same soil under the relatively drier climate whereas crop yield was significantly higher, without affecting grain quality. Especially non-productive water losses (evapotranspiration out of the main growing period) were lower which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the overall long term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (ground water recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long lasting effects of drought periods on SWS imply that long term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less optimal soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.


Sign in / Sign up

Export Citation Format

Share Document