scholarly journals A century of changing fire management alters ungulate forage in a wildfire-dominated landscape

2019 ◽  
Vol 92 (5) ◽  
pp. 523-537 ◽  
Author(s):  
Kelly M Proffitt ◽  
Jesse DeVoe ◽  
Kristin Barker ◽  
Rebecca Durham ◽  
Teagan Hayes ◽  
...  

Abstract Forestry practices such as prescribed fire and wildfire management can modify the nutritional resources of ungulates across broad landscapes. To evaluate the influences of fire and forest management on ungulate nutrition, we measured and compared forage quality and abundance among a range of land cover types and fire histories within 3 elk ranges in Montana. We used historical fire data to assess fire-related variations in elk forage from 1900 to 2015. Fire affected summer forage more strongly than winter forage. Between 1900–1990 and 1990–2015, elk summer range burned by wildfire increased 242–1772 per cent, whereas the area on winter range burned by wildfire was low across all decades. Summer forage quality peaked in recently burned forests and decreased as time since burn increased. Summer forage abundance peaked in dry forests burned 6–15 years prior and mesic forests burned within 5 years. Forests recently burned by wildfire had higher summer forage quality and herbaceous abundance than those recently burned by prescribed fire. These results suggest that the nutritional carrying capacity for elk varies temporally with fire history and management practices. Our methods for characterizing nutritional resources provide a relatively straightforward approach for evaluating nutritional adequacy and tracking changes in forage associated with disturbances such as fire.

Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Casey Teske ◽  
Melanie K. Vanderhoof ◽  
Todd J. Hawbaker ◽  
Joe Noble ◽  
John Kevin Hiers

Development of comprehensive spatially explicit fire occurrence data remains one of the most critical needs for fire managers globally, and especially for conservation across the southeastern United States. Not only are many endangered species and ecosystems in that region reliant on frequent fire, but fire risk analysis, prescribed fire planning, and fire behavior modeling are sensitive to fire history due to the long growing season and high vegetation productivity. Spatial data that map burned areas over time provide critical information for evaluating management successes. However, existing fire data have undocumented shortcomings that limit their use when detailing the effectiveness of fire management at state and regional scales. Here, we assessed information in existing fire datasets for Florida and the Landsat Burned Area products based on input from the fire management community. We considered the potential of different datasets to track the spatial extents of fires and derive fire history metrics (e.g., time since last burn, fire frequency, and seasonality). We found that burned areas generated by applying a 90% threshold to the Landsat burn probability product matched patterns recorded and observed by fire managers at three pilot areas. We then created fire history metrics for the entire state from the modified Landsat Burned Area product. Finally, to show their potential application for conservation management, we compared fire history metrics across ownerships for natural pinelands, where prescribed fire is frequently applied. Implications of this effort include increased awareness around conservation and fire management planning efforts and an extension of derivative products regionally or globally.


2013 ◽  
Vol 22 (3) ◽  
pp. 394 ◽  
Author(s):  
Grant L. Harley ◽  
Henri D. Grissino-Mayer ◽  
Sally P. Horn

We focussed on the influence of historical fire and varied fire management practices on the structure of globally endangered pine rockland ecosystems on two adjacent islands in the Florida Keys: Big Pine Key and No Name Key. We reconstructed fire history in two stands from fire scars on South Florida slash pines (Pinus elliottii Engelm. var. densa Little & Dor.) that were accurately dated using dendrochronology, and quantified stand structure to infer successional trajectories. Fire regimes on Big Pine Key and No Name Key over the past 150 years differed in fire return interval and spatial extent. Fire scar analysis indicated that fires burnt at intervals of 6 and 9 years (Weibull median probability interval) on Big Pine Key and No Name Key with the majority of fires occurring late in the growing season. On Big Pine Key, pine recruitment was widespread, likely due to multiple, widespread prescribed burns conducted since 2000. No Name Key experienced fewer fires than Big Pine Key, but pines recruited at the site from at least the 1890s through the 1970s. Today, pine recruitment is nearly absent on No Name Key, where fire management practices since 1957 could result in loss of pine rockland habitat.


2014 ◽  
Author(s):  
◽  
Katherine M. O'Donnell

The goal of my dissertation was to assess how terrestrial salamanders respond to two common forest management practices -- prescribed fire and timber harvest. Previous studies have reported that timber harvest adversely affects terrestrial salamanders, but there is not enough information to draw conclusions about the effects of prescribed fire. It is important to understand how prescribed fire affects wildlife, as it is increasingly being used to decrease wildfire risk and restore fire-adapted ecosystems. However, many fire management decisions are currently based on predicted plant responses, since there is more data available on plants than wildlife. To estimate terrestrial salamander population size (abundance) prior to treatments, I conducted surveys for three years and used a statistical modeling approach that accounted for the tendency of terrestrial salamanders to be belowground and unavailable for surveys. I found that terrestrial salamander density at our Missouri Ozark study site ranged from 0.4 to 1.6 salamanders per square meter. I found that salamanders were most likely to be on the forest floor surface during or following rainfall, and that they were more likely to be in leaf litter than under cover objects if it had recently rained. Following timber harvest and prescribed fire, salamanders were less likely to be on the surface. It appears that terrestrial salamander abundance is more adversely affected by timber harvest than by prescribed fire. I also tracked individual salamanders before and after a prescribed burn, and found that they stayed belowground much more frequently in burned areas than non-burned areas. However, I did not find evidence of direct salamander mortality due to the fire. My results indicate that terrestrial salamanders respond to post-fire and post-harvest conditions by spending more time belowground to avoid increased physiological stress. Though it appears that terrestrial salamanders can generally avoid direct consequences of prescribed fire, behavioral responses to post-fire micro-environmental conditions could affect salamander populations in ways that are not yet apparent.


2020 ◽  
Vol 6 ◽  
pp. 555
Author(s):  
Alex Zahara

Across the globe, settler nation-states are being forced to contend with the large-scale ecological and social disruptions caused by settler colonialism. Wildfires are a charismatic example of this: when anthropogenic climate change combines with colonial forest management practices, wildfires act in ever changing ways with often violent and uneven impacts to human and nonhuman life. In a context of environmental change, managers, fire ecologists, and politicians alike are increasingly looking to reintroduce fire as a way of restoring “natural” forest landscapes while reducing fire suppression costs. In this paper, I examine one such policy of fire re-integration, in what is currently the Canadian province of Saskatchewan, the homelands of more than 50,000 Indigenous people (Cree, Dakota, Dene, Métis) who live in the province’s Boreal Forest region. In 2004, the Province implemented a controversial policy that locals colloquially refer to as “Let-it-Burn,” where fires are allowed to burn until they encroach upon something designated of “value” (typically human life, community structures, public infrastructure, and commercial timber). While wildfire managers, scientists, and politicians alike consistently advocate for policies of fire-reintegration as ecologically-sound and financially responsible ways forward with fire management, many locals have argued that “Let-it-Burn” is a direct affront to Indigenous sovereignty, destroying contemporary forest landscapes and rebuilding them through state-sanctioned settler values. Breathing fire back into landscapes that burn is a peculiar solution that at once acknowledges and erases the effects of fire’s removal through policies of restoration that risk ignoring the ongoingness of life in forested areas. Through interviews and archival and ethnographic fieldwork, this paper traces the history of the province’s “Let-it-Burn” policy, asking the question, “how to burn well in compromised lands?”  As a way forward with fire reintegration (or not), I highlight the necessity of Indigenous partnership, leadership, and direction within fire management practices on Indigenous territory, which may include fire suppression. This paper adds to STS scholarship on ecological ruination and alterlife, arguing that wildfire management practices are likely to cause harm so long as the effects of settler colonialism are placed in the past and Indigenous rebuilding is erased.


2008 ◽  
Vol 38 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Gregory Peters ◽  
Anna Sala

Thinning and thinning followed by prescribed fire are common management practices intended to restore historic conditions in low-elevation ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the northern Rocky Mountains. While these treatments generally ameliorate the physiology and growth of residual trees, treatment-specific effects on reproductive output are not known. We examined reproductive output of second-growth ponderosa pine in western Montana 9 years after the application of four treatments: thinning, thinning followed by spring prescribed fire, thinning followed by fall prescribed fire, and unthinned control stands. Field and greenhouse observations indicated that reproductive traits vary depending on the specific management treatment. Cone production was significantly higher in trees from all actively managed stands relative to control trees. Trees subjected to prescribed fire produced cones with higher numbers of filled seeds than trees in unburned treatments. Seed mass, percentage germination, and seedling biomass were significantly lower for seeds from trees in spring burn treatments relative to all others and were generally higher in trees from fall burn treatments. We show for the first time that thinning and prescribed-burning treatments can influence reproductive output in ponderosa pine.


1999 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
AB Craig

This paper examines a range of environmental, research and practical issues affecting fire management of pastoral lands in the southern part of the Kimberley region in Western Australia. Although spinifex grasslands dominate most leases, smaller areas of more productive pastures are crucially important to many enterprises. There is a lack of local documentation of burning practices during traditional Aboriginal occupation; general features of the fire regime at that time can be suggested on the basis of information from other inland areas. Definition of current tire regimes is improving through interpretation of NOAA-AVHRR satellite imagery. Irregular extensive wildfires appear to dominate, although this should be confirmed by further accumulation, validation and analysis of fire history data. While these fires cause ma,jor difficulties. controlled burn~ng is a necessary part of station management. Although general management guidelines have been published. local research into tire-grazing effects has been very limited. For spinifex pastures, reconimendations are generally consistent with those applying elsewhere in northern Australia. They favour periodic burning of mature spinifex late in the year, before or shortly after the arrival of the first rains, with deferment of grazing. At that time. days of high fire danger may still be expected and prediction of fire behaviour is critical to burning decisions. Early dry-season burning is also required for creating protective tire breaks and to prepare for burning later in the year. Further development of tools for predicting fire behaviour, suited to the discontinuous fuels characteristic of the area, would be warranted. A range of questions concerning the timing and spatial pattern of burning, control of post-fire grazing, and the economics of fire management, should be addressed as resources permit. This can be done through a combination of opportunistic studies, modelling and documentation of local experience. The development of an expert system should be considered to assist in planning and conducting burning activities. Key words: Kimberley, fire regimes, fire management, pastoralism, spinifex


2012 ◽  
Vol 21 (3) ◽  
pp. 297 ◽  
Author(s):  
Owen F. Price ◽  
Jeremy Russell-Smith ◽  
Felicity Watt

Fire regimes in many north Australian savanna regions are today characterised by frequent wildfires occurring in the latter part of the 7-month dry season. A fire management program instigated from 2005 over 24 000 km2 of biodiversity-rich Western Arnhem Land aims to reduce the area and severity of late dry-season fires, and associated greenhouse gas emissions, through targeted early dry-season prescribed burning. This study used fire history mapping derived mostly from Landsat imagery over the period 1990–2009 and statistical modelling to quantify the mitigation of late dry-season wildfire through prescribed burning. From 2005, there has been a reduction in mean annual total proportion burnt (from 38 to 30%), and particularly of late dry-season fires (from 29 to 12.5%). The slope of the relationship between the proportion of early-season prescribed fire and subsequent late dry-season wildfire was ~–1. This means that imposing prescribed early dry-season burning can substantially reduce late dry-season fire area, by direct one-to-one replacement. There is some evidence that the spatially strategic program has achieved even better mitigation than this. The observed reduction in late dry-season fire without concomitant increase in overall area burnt has important ecological and greenhouse gas emissions implications. This efficient mitigation of wildfire contrasts markedly with observations reported from temperate fire-prone forested systems.


2017 ◽  
Vol 130 (4) ◽  
pp. 320 ◽  
Author(s):  
Rick Rosatte

During 2000 and 2001, Elk (Cervus canadensis) were restored to the Bancroft, Ontario area. The objective of this study was to determine the home range and movements of six social units of Elk, 5–12 years after restoration, in an area of about 2500 km2 near Bancroft. Home range and movements were calculated from 40 221 Global Positioning System locations acquired from 56 collared Elk (16 bulls and 40 cows) between 2006 and 2013. Annual home ranges were found to be significantly greater (mean 110.3 km2, standard error [SE] 11.2) for Elk in areas where winter feeding by humans did not occur compared with those (mean 51.0 km2, SE 9.0) where winter feeding was prevalent. Elk in winter feeding areas had smaller ranges in winter than other seasons. On a seasonal basis, home range size was larger for Elk in areas where winter feeding did not occur; mean winter home range for Elk in non-feeding areas was 73.4 km2 (SE34.0) compared with 8.3 km2 (SE 2.6) for Elk in areas where winter feeding occurred. The 20 Elk that were monitored for multiple years exhibited home range fidelity among years. The entire range of all radio-collared Elk within the social groups studied covered 1716.4 km2 during 2006–2013. Average daily movements of Elk in the study arearanged from 1.0 to 2.1 km/day with greatest movements occurring during spring and summer. However, some Elk were capable of moving an average of 5–7km in a 12-h interval. Movements (about 5 km) to winter range occurred during October to December each year. Cows moved to calving areas in May with mean movements of Elk to spring/summer range about 6 km. Cow/calf groups moved to fall ranges by early September with mean movements of about 4 km. During the rut, mean bull movements of 16.0 km to cow groups over 1–5 days occurred in early September. Hunting of Elk during the fall of 2011 and 2012 did not appear to significantly affect the movements and dispersion of Elk in the study area.


2011 ◽  
Vol 20 (8) ◽  
pp. 909 ◽  
Author(s):  
T. D. Penman ◽  
O. Price ◽  
R. A. Bradstock

Wildfire can result in significant economic costs with inquiries following such events often recommending an increase in management effort to reduce the risk of future losses. Currently, there are no objective frameworks in which to assess the relative merits of management actions or the synergistic way in which the various combinations may act. We examine the value of Bayes Nets as a method for assessing the risk reduction from fire management practices using a case study from a forested landscape. Specifically, we consider the relative reduction in wildfire risk from investing in prescribed burning, initial or rapid attack and suppression. The Bayes Net was developed using existing datasets, a process model and expert opinion. We compared the results of the models with the recorded fire data for an 11-year period from 1997 to 2000 with the model successfully duplicating these data. Initial attack and suppression effort had the greatest effect on the distribution of the fire sizes for a season. Bayes Nets provide a holistic model for considering the effect of multiple fire management methods on the risk of wildfires. The methods could be further advanced by including the costs of management and conducting a formal decision analysis.


2009 ◽  
Vol 18 (2) ◽  
pp. 127 ◽  
Author(s):  
Andrew C. Edwards ◽  
Jeremy Russell-Smith

The paper examines the application of the ecological thresholds concept to fire management issues concerning fire-sensitive vegetation types associated with the remote, biodiversity-rich, sandstone Arnhem Plateau, in western Arnhem Land, monsoonal northern Australia. In the absence of detailed assessments of fire regime impacts on component biota such as exist for adjoining Nitmiluk and World Heritage Kakadu National Parks, the paper builds on validated 16-year fire history and vegetation structural mapping products derived principally from Landsat-scale imagery, to apply critical ecological thresholds criteria as defined by fire regime parameters for assessing the status of fire-sensitive habitat and species elements. Assembled data indicate that the 24 000 km2 study region today experiences fire regimes characterised generally by high annual frequencies (mean = 36.6%) of large (>10 km2) fires that occur mostly in the late dry season under severe fire-weather conditions. Collectively, such conditions substantially exceed defined ecological thresholds for significant proportions of fire-sensitive indicator rain forest and heath vegetation types, and the long-lived obligate seeder conifer tree species, Callitris intratropica. Thresholds criteria are recognised as an effective tool for informing ecological fire management in a variety of geographic settings.


Sign in / Sign up

Export Citation Format

Share Document