Nutrient Removals by Pinestraw Harvesting in Slash Pine Plantations in Florida

2020 ◽  
Vol 66 (3) ◽  
pp. 314-325
Author(s):  
Anna Osiecka ◽  
Patrick J Minogue ◽  
Masato Miwa ◽  
Dwight K Lauer

Abstract Pinestraw harvesting is an important industry in the southeastern United States. There is a need to understand how fertilization can be used efficiently to sustain or increase long-term pinestraw yields and avoid adverse environmental consequences. The effects of fertilization on needlefall nutrient concentrations, pinestraw yields, and nutrient removals on soils with contrasting soil nutrient sorption potential (Entisol vs. Ultisol) were compared using two midrotation slash pine plantations in North Florida. Diammonium phosphate was applied at 0, 144, 430, or 718 kg ha–1 in the spring of 2009 and 2010. Pinestraw was harvested annually in 2009–12. Needlefall mass, pinestraw yields, total Kjeldahl nitrogen concentrations in needlefall and pinestraw, and total Kjeldahl nitrogen, P, K, Ca, and Mg removals increased with fertilization. Diammonium phosphate at 718 kg ha–1 year–1 increased pinestraw yield over the control by 37 and 35 percent 2 years after the second fertilization, and by 11 percent (from 21.5 to 23.8 Mg ha–1) and 12 percent (from 25.0 to 28.1 Mg ha–1) over the 4-year control totals, at Entisol and Ultisol sites, respectively. Differences between sites were larger than fertilization response for most variables. Yields, nutrient concentrations, and removals were higher at the more fertile Ultisol than Entisol and, at both sites, higher than most reported in the literature.

2021 ◽  
Author(s):  
GM I. Islam

This study examined the impact of the antibiotic tetracycline at environmentally relevant concentrations (1μg/L and 10μg/L) on the composition and function of the microbial community that are responsible for the secondary treatment step in a municipal wastewater treatment plant (MWTP). Specifically, this study examined whether nitrification is inhibited by the presence of tetracycline under high and low nutrient replacement conditions. Aerated semi-batch reactors were set up containing activated sludge samples from a MWTP. Reactors were replenished with a synthetic wastewater media at two constant replacement rates for a period of 4 weeks. Parameters such as ammonia, nitrate/nitrite and total Kjeldahl nitrogen concentrations were monitored to evaluate the nitrogen removal efficiency. Under a low nutrient replacement rate, tetracycline was observed to have a positive impact on ammonia removal and nitrification than at the higher one. However, total Kjeldahl nitrogen concentrations increased in low nutrient replacement reactors under the presence of tetracycline which suggested a potential inhibitory effect on denitrification. At high nutrient replacement rates, tetracycline did not demonstrate an inhibitory effect on both nitrification and denitrification processes. Overall, it appears that both antibiotic presence and nutrient replacement rates can influence the community composition and function of microbial communities found in a MWTP.


2019 ◽  
Vol 11 (21) ◽  
pp. 6009
Author(s):  
Esther O. Thomsen ◽  
Jennifer R. Reeve ◽  
Catherine M. Culumber ◽  
Diane G. Alston ◽  
Robert Newhall ◽  
...  

Standard commercial soil tests typically quantify nitrogen, phosphorus, potassium, pH, and salinity. These factors alone are not sufficient to predict the long-term effects of management on soil health. The goal of this study was to assess the effectiveness and use of simple physical, biological, and chemical soil health indicator tests that can be completed on-site. Analyses were conducted on soil samples collected from three experimental peach orchards located on the Utah State Horticultural Research Farm in Kaysville, Utah. All simple tests were correlated to comparable lab analyses using Pearson’s correlation. The highest positive correlations were found between Solvita® respiration, and microbial biomass (R = 0.88), followed by our modified slake test and microbial biomass (R = 0.83). Both Berlese funnel and pit count methods of estimating soil macro-organism diversity were fairly predictive of soil health. Overall, simple commercially available chemical tests were weak indicators of soil nutrient concentrations compared to laboratory tests. Modified slake tests, Solvita® respiration and soil organism biodiversity counts may be efficient and cost-effective tools for monitoring soil health on-site.


2008 ◽  
Vol 38 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Jennifer (Bennett) Phelan ◽  
H. Lee Allen

To develop a nitrogen (N) and phosphorus (P) fertilization regime that produces long-term increases in stand productivity and soil nutrient supply in loblolly pine plantations, a series of N + P fertilizer studies were established in the Southeastern United States. One of these installations was examined partway through the study to determine if changes to stand productivity and soil nutrient supply had already been achieved. Stand growth and foliar nutrient concentrations were measured for 6 years, and during the third year, a seedling bioassay was conducted with soil collected from the highest fertilization and nonfertilized treatments. Annual stand growth was increased by 14%–27% in the fertilized plots suggesting that the fertilizer regime improved stand productivity. However, results from the seedling bioassay showed that only P fertilization had caused changes in soil nutrient supply. Seedling P contents in the fertilized treatments were 3.6 times larger than those in the nonfertilized treatments. In contrast, total system N contents were equivalent in the fertilized and nonfertilized systems, and extractable nitrate (NO3–), ammonium (NH4+), and biologically active N were higher in the nonfertilized soils. Future measurements and seedlings bioassay assessments should be conducted to determine when and if long-term changes in soil quality and stand productivity are achieved.


2021 ◽  
Author(s):  
GM I. Islam

This study examined the impact of the antibiotic tetracycline at environmentally relevant concentrations (1μg/L and 10μg/L) on the composition and function of the microbial community that are responsible for the secondary treatment step in a municipal wastewater treatment plant (MWTP). Specifically, this study examined whether nitrification is inhibited by the presence of tetracycline under high and low nutrient replacement conditions. Aerated semi-batch reactors were set up containing activated sludge samples from a MWTP. Reactors were replenished with a synthetic wastewater media at two constant replacement rates for a period of 4 weeks. Parameters such as ammonia, nitrate/nitrite and total Kjeldahl nitrogen concentrations were monitored to evaluate the nitrogen removal efficiency. Under a low nutrient replacement rate, tetracycline was observed to have a positive impact on ammonia removal and nitrification than at the higher one. However, total Kjeldahl nitrogen concentrations increased in low nutrient replacement reactors under the presence of tetracycline which suggested a potential inhibitory effect on denitrification. At high nutrient replacement rates, tetracycline did not demonstrate an inhibitory effect on both nitrification and denitrification processes. Overall, it appears that both antibiotic presence and nutrient replacement rates can influence the community composition and function of microbial communities found in a MWTP.


2019 ◽  
Vol 86 (4) ◽  
pp. 765-770 ◽  
Author(s):  
X.-Y. Li ◽  
P.-P. Fan ◽  
Y. Liu ◽  
G.-L. Hou ◽  
Q. Wang ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 501
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Lingling Wan ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
...  

Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of β-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson’s correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices.


2018 ◽  
Vol 67 (1) ◽  
pp. 91-103
Author(s):  
László Simon ◽  
Marianna Makádi ◽  
György Vincze ◽  
Zsuzsanna Uri ◽  
Katalin Irinyiné Oláh ◽  
...  

A small-plot long-term field fertilization experiment was set up in 2011 with willow (Salix triandra x Salix viminalis ’Inger’) grown as an energy crop in Nyíregyháza, Hungary. The brown forest soil was treated three times (in June 2011, May 2013, May 2016) with municipal biocompost (MBC), municipal sewage sludge compost (MSSC) or willow ash (WA), and twice (June 2011, May 2013) with rhyolite tuff (RT). In late May – early June 2016 urea (U) and sulphuric urea (SU) fertilizers were also applied to the soil as top-dressing (TD). These fertilizers and amendments were also applied to the soil in 2016 in the combinations; MBC+SU, RT+SU, WA+SU and MSSC+WA. All the treatments were repeated four times. In July 2016 the highest nitrogen concentrations in willow leaves were measured in the U (3.47 m/m%) and SU (3.01 m/m%) treatments, and these values were significantly higher than the control (2.46 m/m%). An excess of nitrogen considerably reduced the Zn uptake of the leaves, with values of 39.5 μg g-1 in the U treatment, 53.4 μg g-1 in the SU treatment, and 63.5 μg g-1 in the control. All other amendments or TDs, except for WA, enhanced the specific potassium concentrations in willow leaves compared to the control. No significant quantities of toxic elements (As, Ba, Cd, Pb) were transported from soil amendments or TDs to the willow leaves. In July 2016 the most intensive leaf chlorophyll fluorescence was observed in the MSSC and MSSC+WA treatments.


Sign in / Sign up

Export Citation Format

Share Document