scholarly journals A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans

2020 ◽  
Vol 12 (2) ◽  
pp. 3906-3916 ◽  
Author(s):  
James F Fleming ◽  
Roberto Feuda ◽  
Nicholas W Roberts ◽  
Davide Pisani

Abstract Our ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct. Opsin phylogeny illustrates this problem clearly. Opsins are G-protein coupled receptors utilized in photoreceptive processes across Metazoa and their protein sequences are roughly 300 amino acids long. A number of incongruent opsin phylogenies have been published and opsin evolution remains poorly understood. Here, we present a novel approach, the canary sequence approach, to investigate and potentially circumvent errors in single-gene phylogenies. First, we demonstrate our approach using two well-understood cases of long-branch attraction in single-gene data sets, and simulations. After that, we apply our approach to a large collection of well-characterized opsins to clarify the relationships of the three main opsin subfamilies.

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Monique Aouad ◽  
Jean-Pierre Flandrois ◽  
Frédéric Jauffrit ◽  
Manolo Gouy ◽  
Simonetta Gribaldo ◽  
...  

Abstract Background The recent rise in cultivation-independent genome sequencing has provided key material to explore uncharted branches of the Tree of Life. This has been particularly spectacular concerning the Archaea, projecting them at the center stage as prominently relevant to understand early stages in evolution and the emergence of fundamental metabolisms as well as the origin of eukaryotes. Yet, resolving deep divergences remains a challenging task due to well-known tree-reconstruction artefacts and biases in extracting robust ancient phylogenetic signal, notably when analyzing data sets including the three Domains of Life. Among the various strategies aimed at mitigating these problems, divide-and-conquer approaches remain poorly explored, and have been primarily based on reconciliation among single gene trees which however notoriously lack ancient phylogenetic signal. Results We analyzed sub-sets of full supermatrices covering the whole Tree of Life with specific taxonomic sampling to robustly resolve different parts of the archaeal phylogeny in light of their current diversity. Our results strongly support the existence and early emergence of two main clades, Cluster I and Cluster II, which we name Ouranosarchaea and Gaiarchaea, and we clarify the placement of important novel archaeal lineages within these two clades. However, the monophyly and branching of the fast evolving nanosized DPANN members remains unclear and worth of further study. Conclusions We inferred a well resolved rooted phylogeny of the Archaea that includes all recently described phyla of high taxonomic rank. This phylogeny represents a valuable reference to study the evolutionary events associated to the early steps of the diversification of the archaeal domain. Beyond the specifics of archaeal phylogeny, our results demonstrate the power of divide-and-conquer approaches to resolve deep phylogenetic relationships, which should be applied to progressively resolve the entire Tree of Life.


2020 ◽  
Author(s):  
Matthew H Van Dam ◽  
James B Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

Abstract Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]


2019 ◽  
Author(s):  
Matthew H. Van Dam ◽  
James B. Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

ABSTRACTUltraconserved genomic elements (UCEs), are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes is agnostic to genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here we characterized UCEs from 12 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated 4 different sets of UCE markers by genomic category from 5 different studies including; birds, mammals, fish, Hymenoptera (ants, wasps and bees) and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by 2 or more UCEs, corresponding to non-overlapping segments of a single gene. We considered these UCEs to be non-independent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging co-genic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees were significantly improved across all datasets. Increased loci length appears to drive this increase in bootstrap support. Additionally, we found that gene trees generated from merged UCEs were more accurate than those generated by unmerged and randomly merged UCEs, based on our simulation study. This modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses.


2017 ◽  
Author(s):  
Xiaofan Zhou ◽  
Xingxing Shen ◽  
Chris Todd Hittinger ◽  
Antonis Rokas

AbstractPhylogenetics has witnessed dramatic increases in the sizes of data matrices assembled to resolve branches of the tree of life, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these four programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets from diverse animal, plant, and fungal lineages with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation–based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the relative performance of the programs. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses.


2021 ◽  
Author(s):  
Jie Cui ◽  
Soohyun Park ◽  
Wangsheng Yu ◽  
Kendra Carmon ◽  
Qingyun J. Liu

AbstractLGR4-6 (Leucine-rich repeating containing, G-protein-coupled receptors 4, 5, and 6) are three related receptors with distinct roles in organ development and stem cell survival. All three receptors are upregulated in gastrointestinal cancers to different levels, and LGR5 has been shown to be enriched in cancer stem cells. Antibody-drug conjugates (ADCs) targeting LGR5 showed robust antitumor effect in vivo but could not eradicate tumors due to plasticity of LGR5-positive cancer cells. As LGR5-negative cells often express LGR4 or LGR6 or both, we reasoned that simultaneous targeting of all three LGRs may provide a more effective approach. R-spondins (RSPOs) bind to LGR4-6 with high affinity and potentiate Wnt signaling. We identified an RSPO4 mutant (Q65R) that retains potent LGR binding but no longer potentiates Wnt signaling. The RSPO4 mutant was fused to the N-terminus of human IgG1-Fc to create a peptibody which was then conjugated with cytotoxins monomethyl auristatin or duocarmycin by site-specific conjugation. The resulting peptibody drug conjugates (PDCs) showed potent cytotoxic effects on cancer cell lines expressing any LGR in vitro and suppressed tumor growth in vivo without inducing intestinal enlargement or other adverse effects. These results suggest that RSPO-derived PDCs may provide a novel approach to the treatment of cancers with high LGR expression.


2021 ◽  
Vol 118 (51) ◽  
pp. e2113373118
Author(s):  
Eunna Huh ◽  
Jonathan Gallion ◽  
Melina A. Agosto ◽  
Sara J. Wright ◽  
Theodore G. Wensel ◽  
...  

G protein-coupled receptors (GPCRs) are the largest family of human proteins. They have a common structure and, signaling through a much smaller set of G proteins, arrestins, and effectors, activate downstream pathways that often modulate hallmark mechanisms of cancer. Because there are many more GPCRs than effectors, mutations in different receptors could perturb signaling similarly so as to favor a tumor. We hypothesized that somatic mutations in tumor samples may not be enriched within a single gene but rather that cognate mutations with similar effects on GPCR function are distributed across many receptors. To test this possibility, we systematically aggregated somatic cancer mutations across class A GPCRs and found a nonrandom distribution of positions with variant amino acid residues. Individual cancer types were enriched for highly impactful, recurrent mutations at selected cognate positions of known functional motifs. We also discovered that no single receptor drives this pattern, but rather multiple receptors contain amino acid substitutions at a few cognate positions. Phenotypic characterization suggests these mutations induce perturbation of G protein activation and/or β-arrestin recruitment. These data suggest that recurrent impactful oncogenic mutations perturb different GPCRs to subvert signaling and promote tumor growth or survival. The possibility that multiple different GPCRs could moonlight as drivers or enablers of a given cancer through mutations located at cognate positions across GPCR paralogs opens a window into cancer mechanisms and potential approaches to therapeutics.


2017 ◽  
Author(s):  
Xiaofan Zhou ◽  
Sarah Lutteropp ◽  
Lucas Czech ◽  
Alexandros Stamatakis ◽  
Moritz von Looz ◽  
...  

AbstractIncongruence, or topological conflict, is prevalent in genome-scale data sets but relatively few measures have been developed to quantify it. Internode Certainty (IC) and related measures were recently introduced to explicitly quantify the level of incongruence of a given internode (or internal branch) among a set of phylogenetic trees and complement regular branch support statistics in assessing the confidence of the inferred phylogenetic relationships. Since most phylogenomic studies contain data partitions (e.g., genes) with missing taxa and IC scores stem from the frequencies of bipartitions (or splits) on a set of trees, the calculation of IC scores requires adjusting the frequencies of bipartitions from these partial gene trees. However, when the proportion of missing data is high, current approaches that adjust bipartition frequencies in partial gene trees tend to overestimate IC scores and alternative adjustment approaches differ substantially from each other in their scores. To overcome these issues, we developed three new measures for calculating internode certainty that are based on the frequencies of quartets, which naturally apply to both comprehensive and partial trees. Our comparison of these new quartet-based measures to previous bipartition-based measures on simulated data shows that: 1) on comprehensive trees, both types of measures yield highly similar IC scores; 2) on partial trees, quartet-based measures generate more accurate IC scores; and 3) quartet-based measures are more robust to the absence of phylogenetic signal and errors in the phylogenetic relationships to be assessed. Additionally, analysis of 15 empirical phylogenomic data sets using our quartet-based measures suggests that numerous relationships remain unresolved despite the availability of genome-scale data. Finally, we provide an efficient open-source implementation of these quartet-based measures in the program QuartetScores, which is freely available at https://github.com/algomaus/QuartetScores.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Sarah Christensen ◽  
Erin K. Molloy ◽  
Pranjal Vachaspati ◽  
Ananya Yammanuru ◽  
Tandy Warnow

Abstract Motivation Estimated gene trees are often inaccurate, due to insufficient phylogenetic signal in the single gene alignment, among other causes. Gene tree correction aims to improve the accuracy of an estimated gene tree by using computational techniques along with auxiliary information, such as a reference species tree or sequencing data. However, gene trees and species trees can differ as a result of gene duplication and loss (GDL), incomplete lineage sorting (ILS), and other biological processes. Thus gene tree correction methods need to take estimation error as well as gene tree heterogeneity into account. Many prior gene tree correction methods have been developed for the case where GDL is present. Results Here, we study the problem of gene tree correction where gene tree heterogeneity is instead due to ILS and/or HGT. We introduce TRACTION, a simple polynomial time method that provably finds an optimal solution to the RF-optimal tree refinement and completion (RF-OTRC) Problem, which seeks a refinement and completion of a singly-labeled gene tree with respect to a given singly-labeled species tree so as to minimize the Robinson−Foulds (RF) distance. Our extensive simulation study on 68,000 estimated gene trees shows that TRACTION matches or improves on the accuracy of well-established methods from the GDL literature when HGT and ILS are both present, and ties for best under the ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. We also show that a naive generalization of the RF-OTRC problem to multi-labeled trees is possible, but can produce misleading results where gene tree heterogeneity is due to GDL.


1994 ◽  
Vol 14 (3-4) ◽  
pp. 167-186 ◽  
Author(s):  
D. Röper ◽  
E. Jacoby ◽  
P. Krüger ◽  
M. Engels ◽  
J. Grötzinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document