scholarly journals Loss of the Polyketide Synthase StlB Results in Stalk Cell Overproduction in Polysphondylium violaceum

2020 ◽  
Vol 12 (5) ◽  
pp. 674-683
Author(s):  
Takaaki B Narita ◽  
Yoshinori Kawabe ◽  
Koryu Kin ◽  
Richard A Gibbs ◽  
Adam Kuspa ◽  
...  

Abstract Major phenotypic innovations in social amoeba evolution occurred at the transition between the Polysphondylia and group 4 Dictyostelia, which comprise the model organism Dictyostelium discoideum, such as the formation of a new structure, the basal disk. Basal disk differentiation and robust stalk formation require the morphogen DIF-1, synthesized by the polyketide synthase StlB, the des-methyl-DIF-1 methyltransferase DmtA, and the chlorinase ChlA, which are conserved throughout Dictyostelia. To understand how the basal disk and other innovations evolved in group 4, we sequenced and annotated the Polysphondylium violaceum (Pvio) genome, performed cell type-specific transcriptomics to identify cell-type marker genes, and developed transformation and gene knock-out procedures for Pvio. We used the novel methods to delete the Pvio stlB gene. The Pvio stlB− mutants formed misshapen curly sorogens with thick and irregular stalks. As fruiting body formation continued, the upper stalks became more regular, but structures contained 40% less spores. The stlB− sorogens overexpressed a stalk gene and underexpressed a (pre)spore gene. Normal fruiting body formation and sporulation were restored in Pvio stlB− by including DIF-1 in the supporting agar. These data indicate that, although conserved, stlB and its product(s) acquired both a novel role in the group 4 Dictyostelia and a role opposite to that in its sister group.

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 523-526 ◽  
Author(s):  
K. Inouye ◽  
J. Gross

In ‘slugger’ mutants of Dictyostelium discoideum, aggregates of cells remain for an abnormally long time in the migratory phase under conditions where wild-type aggregates form fruiting bodies. In the present work, we have examined the relationship between the defect in fruiting body formation in these mutants and their ability to form mature stalk cells. We dissociated anterior cells from slugs of the mutants and their parents and tested their ability to form stalk cells when incubated at low density in the presence of (1) the stalk cell morphogen Differentiation Inducing Factor-1 (DIF-1) together with cyclic AMP, or (2) 8-Br-cAMP, which is believed to penetrate cell membrane and activate cAMP- dependent protein kinase (PKA). Most of the mutants were markedly defective in forming stalk cells in response to DIF-1 plus cAMP, confirming a close relationship between fruiting body formation and stalk cell maturation. On the other hand, many of these same mutants formed stalk cells efficiently in response to 8-Br-cAMP. This supports evidence for an essential role of PKA in stalk cell maturation and fruiting body formation. It also indicates that many of the mutants owe their slugger phenotype to defects in functions required for optimal adenylyl cyclase activity.


2005 ◽  
Vol 4 (9) ◽  
pp. 1599-1602 ◽  
Author(s):  
Silvia Gabella ◽  
Simona Abbà ◽  
Sebastien Duplessis ◽  
Barbara Montanini ◽  
Francis Martin ◽  
...  

ABSTRACT cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.


1979 ◽  
Vol 35 (1) ◽  
pp. 203-215
Author(s):  
D.H. O'Day

The spatial pattern of cellular differentiation was studied during fruiting body formation in Polysphondylium pallidum using 3 different staining methods: Calcofluor fluorescence (cellulose accumulation), neutral red (prestalk cells) and immunofluorescence (prespore cells). Neutral-red staining revealed the existence of a clear prestalk region which becomes evident during aggregation and continues throughout culmination. Immunofluorescent staining demonstrated that cells in the prestalk region gradually lose their presporeness (fluorescence) as they are transformed into differentiated stalk cells. Calcofluor staining revealed that stalk cell differentiation begins during the mid-aggregation phase and that the mode of formation of the main stalk and the side branches differs slightly in morphology. Calcofluor staining also demonstrated the development, during aggregation, of a thick cellulosic girdle with lateral tubular extensions which surround the aggregation streams. The above results are discussed in terms of our present knowledge about differentiation and morphogenesis in cellular slime moulds.


2006 ◽  
Vol 61 (5) ◽  
pp. 1283-1293 ◽  
Author(s):  
Pamela J. Bonner ◽  
Wesley P. Black ◽  
Zhaomin Yang ◽  
Lawrence J. Shimkets

1995 ◽  
Vol 33 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Kazunari INABA ◽  
Yoshinori TAKANO ◽  
Yoshikazu MAYUZUMI ◽  
Toshirou MITSUNAGA

Development ◽  
1976 ◽  
Vol 35 (2) ◽  
pp. 323-333
Author(s):  
D. J. Watts ◽  
T. E. Treffry

Myxamoebae of Dictyostelium discoideum were allowed to develop on cellulose acetate filters, and specimens taken at various stages of fruiting body formation were prepared for study by scanning electron microscopy. In the immature fruiting body where the mass of pre-spore cells has just been lifted off the substratum by the developing stalk, the pre-spore cells are irregular in shape and are similar in appearance to cells in aggregates at earlier stages of development. As the stalk lengthens, the pre-spore cells gradually separate from one another and become rounded and elongate, but mature spores are not visible until the fruiting body reaches its maximum height. It is concluded that, contrary to previous reports, spore maturation is a slow process and is not completed until the sorus becomes pigmented. The mature stalk is surrounded by a smooth cellulose sheath but this does not envelop the cells of the basal disc, which remain discrete. The fruiting body is enclosed in a slime sheath and this may be important in holding together the mass of spores.


Sign in / Sign up

Export Citation Format

Share Document