scholarly journals A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes

2020 ◽  
Vol 12 (10) ◽  
pp. 1841-1857
Author(s):  
Luiz Augusto Cauz-Santos ◽  
Zirlane Portugal da Costa ◽  
Caroline Callot ◽  
Stéphane Cauet ◽  
Maria Imaculada Zucchi ◽  
...  

Abstract Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yike Luo ◽  
Jian He ◽  
Rudan Lyu ◽  
Jiamin Xiao ◽  
Wenhe Li ◽  
...  

The evening primrose family, Onagraceae, is a well defined family of the order Myrtales, comprising 22 genera widely distributed from boreal to tropical areas. In this study, we report and characterize the complete chloroplast genome sequences of 13 species in Circaea, Chamaenerion, and Epilobium using a next-generation sequencing method. We also retrieved chloroplast sequences from two other Onagraceae genera to characterize the chloroplast genome of the family. The complete chloroplast genomes of Onagraceae encoded an identical set of 112 genes (with exclusion of duplication), including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The chloroplast genomes are basically conserved in gene arrangement across the family. However, a large segment of inversion was detected in the large single copy region of all the samples of Oenothera subsect. Oenothera. Two kinds of inverted repeat (IR) region expansion were found in Oenothera, Chamaenerion, and Epilobium samples. We also compared chloroplast genomes across the Onagraceae samples in some features, including nucleotide content, codon usage, RNA editing sites, and simple sequence repeats (SSRs). Phylogeny was inferred by the chloroplast genome data using maximum-likelihood (ML) and Bayesian inference methods. The generic relationship of Onagraceae was well resolved by the complete chloroplast genome sequences, showing potential value in inferring phylogeny within the family. Phylogenetic relationship in Oenothera was better resolved than other densely sampled genera, such as Circaea and Epilobium. Chloroplast genomes of Oenothera subsect. Oenothera, which are biparental inheritated, share a syndrome of characteristics that deviate from primitive pattern of the family, including slightly expanded inverted repeat region, intron loss in clpP, and presence of the inversion.


2020 ◽  
Author(s):  
Richard Sharpe ◽  
Bruce Andreas Williamson-Benavides ◽  
Gerry Edwards ◽  
Amit Dhingra

Abstract Background Chloroplast genome information is critical to understanding forms of photosynthesis in the plant kingdom. During the evolutionary process, plants have developed different photosynthetic strategies that are accompanied by complementary biochemical and anatomical features. Members of family Chenopodiaceae have species with C 3 photosynthesis, and variations of C 4 photosynthesis in which photorespiration is reduced by concentrating CO 2 around Rubisco through dual coordinated functioning of dimorphic chloroplasts. Among dicots, the family has the largest number of C 4 species, and greatest structural and biochemical diversity in forms of C 4 including the canonical dual-cell Kranz anatomy, and the recently identified single cell C 4 with the presence of dimorphic chloroplasts separated by a vacuole. This is the first comparative analysis of chloroplast genomes in species representative of photosynthetic types in the family. Results Methodology with high throughput sequencing complemented with Sanger sequencing of selected loci provided high quality and complete chloroplast genomes of seven species in the family and one species in the closely related Amaranthaceae family, representing C 3 , Kranz type C 4 and single cell C 4 (SSC 4 ) photosynthesis Six of the eight chloroplast genomes are new, while two are improved versions of previously published genomes. The depth of coverage obtained using high-throughput sequencing complemented with targeted resequencing of certain loci enabled superior resolution of the border junctions, directionality and repeat region sequences. Comparison of the chloroplast genomes with previously sequenced plastid genomes revealed similar genome organization, gene order and content with a few revisions. High-quality complete chloroplast genome sequences resulted in correcting the orientation the LSC region of the published Bienertia sinuspersici chloroplast genome, identification of stop codons in the rpl23 gene in B. sinuspersici and B. cycloptera , and identifying an instance of IR expansion in the Haloxylon ammodendron inverted repeat sequence. The rare observation of a mitochondria-to-chloroplast inter-organellar gene transfer event was identified in family Chenopodiaceae. Conclusions This study reports complete chloroplast genomes from seven Chenopodiaceae and one Amaranthaceae species. The depth of coverage obtained using high-throughput sequencing complemented with targeted resequencing of certain loci enabled superior resolution of the border junctions, directionality, and repeat region sequences. Therefore, the use of high throughput and Sanger sequencing, in a hybrid method, reaffirms to be rapid, efficient, and reliable for chloroplast genome sequencing.


2014 ◽  
Vol 168 ◽  
pp. 108-112 ◽  
Author(s):  
B. Bielsa ◽  
D. Jiwan ◽  
A. Fernandez i Marti ◽  
A. Dhingra ◽  
M.J. Rubio-Cabetas

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Huyen-Trang Vu ◽  
Ngan Tran ◽  
Thanh-Diem Nguyen ◽  
Quoc-Luan Vu ◽  
My-Huyen Bui ◽  
...  

Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.


Author(s):  
Wojciech Pląder ◽  
Yasushi Yukawa ◽  
Masahiro Sugiura ◽  
Stefan Malepszy

AbstractThe complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.


Sign in / Sign up

Export Citation Format

Share Document