scholarly journals Comparative Analysis of Complete Chloroplast Genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and Insights Into Phylogenetic Relationships of Onagraceae

2021 ◽  
Vol 12 ◽  
Author(s):  
Yike Luo ◽  
Jian He ◽  
Rudan Lyu ◽  
Jiamin Xiao ◽  
Wenhe Li ◽  
...  

The evening primrose family, Onagraceae, is a well defined family of the order Myrtales, comprising 22 genera widely distributed from boreal to tropical areas. In this study, we report and characterize the complete chloroplast genome sequences of 13 species in Circaea, Chamaenerion, and Epilobium using a next-generation sequencing method. We also retrieved chloroplast sequences from two other Onagraceae genera to characterize the chloroplast genome of the family. The complete chloroplast genomes of Onagraceae encoded an identical set of 112 genes (with exclusion of duplication), including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The chloroplast genomes are basically conserved in gene arrangement across the family. However, a large segment of inversion was detected in the large single copy region of all the samples of Oenothera subsect. Oenothera. Two kinds of inverted repeat (IR) region expansion were found in Oenothera, Chamaenerion, and Epilobium samples. We also compared chloroplast genomes across the Onagraceae samples in some features, including nucleotide content, codon usage, RNA editing sites, and simple sequence repeats (SSRs). Phylogeny was inferred by the chloroplast genome data using maximum-likelihood (ML) and Bayesian inference methods. The generic relationship of Onagraceae was well resolved by the complete chloroplast genome sequences, showing potential value in inferring phylogeny within the family. Phylogenetic relationship in Oenothera was better resolved than other densely sampled genera, such as Circaea and Epilobium. Chloroplast genomes of Oenothera subsect. Oenothera, which are biparental inheritated, share a syndrome of characteristics that deviate from primitive pattern of the family, including slightly expanded inverted repeat region, intron loss in clpP, and presence of the inversion.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Huyen-Trang Vu ◽  
Ngan Tran ◽  
Thanh-Diem Nguyen ◽  
Quoc-Luan Vu ◽  
My-Huyen Bui ◽  
...  

Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 474 ◽  
Author(s):  
Dong-Mei Li ◽  
Chao-Yi Zhao ◽  
Xiao-Fei Liu

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


2019 ◽  
Vol 20 (23) ◽  
pp. 5940
Author(s):  
Xinbo Pang ◽  
Hongshan Liu ◽  
Suran Wu ◽  
Yangchen Yuan ◽  
Haijun Li ◽  
...  

Species identification of oaks (Quercus) is always a challenge because many species exhibit variable phenotypes that overlap with other species. Oaks are notorious for interspecific hybridization and introgression, and complex speciation patterns involving incomplete lineage sorting. Therefore, accurately identifying Quercus species barcodes has been unsuccessful. In this study, we used chloroplast genome sequence data to identify molecular markers for oak species identification. Using next generation sequencing methods, we sequenced 14 chloroplast genomes of Quercus species in this study and added 10 additional chloroplast genome sequences from GenBank to develop a DNA barcode for oaks. Chloroplast genome sequence divergence was low. We identified four mutation hotspots as candidate Quercus DNA barcodes; two intergenic regions (matK-trnK-rps16 and trnR-atpA) were located in the large single copy region, and two coding regions (ndhF and ycf1b) were located in the small single copy region. The standard plant DNA barcode (rbcL and matK) had lower variability than that of the newly identified markers. Our data provide complete chloroplast genome sequences that improve the phylogenetic resolution and species level discrimination of Quercus. This study demonstrates that the complete chloroplast genome can substantially increase species discriminatory power and resolve phylogenetic relationships in plants.


2020 ◽  
Vol 12 (10) ◽  
pp. 1841-1857
Author(s):  
Luiz Augusto Cauz-Santos ◽  
Zirlane Portugal da Costa ◽  
Caroline Callot ◽  
Stéphane Cauet ◽  
Maria Imaculada Zucchi ◽  
...  

Abstract Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2165 ◽  
Author(s):  
Xiao Zhang ◽  
Tao Zhou ◽  
Jia Yang ◽  
Jingjing Sun ◽  
Miaomiao Ju ◽  
...  

Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


Author(s):  
Wojciech Pląder ◽  
Yasushi Yukawa ◽  
Masahiro Sugiura ◽  
Stefan Malepszy

AbstractThe complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.


Author(s):  
Inkyu Park ◽  
Wook-Jin Kim ◽  
Sang-Min Yeo ◽  
Goya Choi ◽  
Young-Min Kang ◽  
...  

The genus Fritillaria belongs to the widely distributed family Liliaceae. The bulbs of Fritillaria ussuriensis and Fritillaria cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species is therefore required. Here, we report the complete chloroplast (cp) genome sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria cp genomes were 151,524 and 151,083 bp in length, respectively, including a pair of inverted repeat regions (52,678 and 52,156 bp) separated by a large single copy region (81,732 and 81,390 bp) and small single copy region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised 77 protein-coding genes in F. ussuriensis and 78 in F. cirrhosa, 30 tRNA genes, and four rRNA genes. The gene order, content, and orientation of the two Fritillaria cp genomes exhibited the general structure of flowering plants, and were similar to those of other Fritillaria species. Comparison of the six Fritillaria species’ cp genomes indicated seven highly divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding regions. We established the position of the six species through phylogenic analysis. The complete chloroplast genome sequences of two Fritillaria species will be useful genomics resources for identification of Fritillaria species and for studying the phylogenetic relationship among Fritillaria species within the Liliaceae family.


2019 ◽  
Author(s):  
Qiwen Zhong ◽  
Shipeng Yang ◽  
Xuemei Sun ◽  
Lihui Wang ◽  
Yi Li

Jerusalem artichoke (Helianthus tuberosus L.) is widely cultivated in Northwest China which has become an emerging economic crop with rapid development. Because of its elevated inulin content and high resistance, it is widely used in functional food, inulin processing, feed, and ecological management. In this study, Illumina sequencing technology was utilized to assemble and annotate the complete chloroplast genome sequences of Jerusalem artichoke. The total length was 151,431 bp, including four conserved regions: A pair of reverse repeat regions (IRa 24,568 bp and IRb 24,603 bp), a large single-copy region (LSC, 83,981 bp), and a small single-copy region (SSC, 18,279 bp). The genome had a total of 115 genes, with 19 present in the reverse direction in the IR region. 36 simple sequence repeats (SSRs) were identified in the coding and non-coding regions, most of which were biased towards A/T bases. 32 SSRs were distributed in the non-coding regions. Comparative analysis of the chloroplast genome sequence of Jerusalem artichoke and other species of the composite family revealed the chloroplast genome sequences of plants of the composite family to be highly conserved. Differences were observed in 24 gene loci in the coding region, with the degree of differentiation of the ycf2 gene being the most obvious. Phylogenetic analysis showed Helianthus petiolaris subsp. fallax had the closest relationship with Jerusalem artichoke, both members of the Helianthus genus. Selective locus detection of the ycf2 gene in eight species of the composite family was performed to explore adaptive evolution traits of the ycf2 gene in Jerusalem artichoke. The results show that there are significant and extremely significant positive selection sites at the 1239N and 1518R loci, respectively, indicating that the ycf2 gene has been subject to adaptive evolution and has the potential to be used as a phylogenetic reconstruction locus in the composite family. Insights from our assessment of the complete chloroplast genome sequences of Jerusalem artichoke will aid in the in-depth study of the evolutionary relationship of the composite family, and provide significant sequencing information for the genetic improvement of Jerusalem artichoke.


Sign in / Sign up

Export Citation Format

Share Document