scholarly journals A New Dinoflagellate Genome Illuminates a Conserved Gene Cluster Involved in Sunscreen Biosynthesis

Author(s):  
Eiichi Shoguchi ◽  
Girish Beedessee ◽  
Kanako Hisata ◽  
Ipputa Tada ◽  
Haruhi Narisoko ◽  
...  

Abstract Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mbp with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids (MAAs), which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a GMC (glucose-methanol-choline) oxidoreductase with an FAD (flavin adenine dinucleotide) domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize MAAs. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.

2019 ◽  
Vol 20 (5) ◽  
pp. 1045 ◽  
Author(s):  
Xiaoqin Li ◽  
Yunjuan Zuo ◽  
Xinxin Zhu ◽  
Shuai Liao ◽  
Jinshuang Ma

Aristolochiaceae, comprising about 600 species, is a unique plant family containing aristolochic acids (AAs). In this study, we sequenced seven species of Aristolochia, and retrieved eleven chloroplast (cp) genomes published for comparative genomics analysis and phylogenetic constructions. The results show that the cp genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The cp genomes range from 159,308 bp to 160,520 bp in length and have a similar GC content of 38.5%–38.9%. A total number of 113 genes were identified, including 79 protein-coding genes, 30 tRNAs and four rRNAs. Although genomic structure and size were highly conserved, the IR-SC boundary regions were variable between these seven cp genomes. The trnH-GUG genes, are one of major differences between the plastomes of the two subgenera Siphisia and Aristolochia. We analyzed the features of nucleotide substitutions, distribution of repeat sequences and simple sequences repeats (SSRs), positive selections in the cp genomes, and identified 16 hotspot regions for genomes divergence that could be utilized as potential markers for phylogeny reconstruction. Phylogenetic relationships of the family Aristolochiaceae inferred from the 18 cp genome sequences were consistent and robust, using maximum parsimony (MP), maximum likelihood (ML), and Bayesian analysis (BI) methods.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1875
Author(s):  
Ran Li ◽  
Zhenxing Ma ◽  
Changfa Zhou

Mayflies of the family Neoephemeridae are widespread in the Holarctic and Oriental regions, and its phylogenetic position is still unstable in the group Furcatergalia (mayflies with fringed gills). In the present study, we determined the complete mitogenomes of two species, namely Potamanthellus edmundsi and Pulchephemera projecta, of this family. The lengths of two mitogenomes were 15,274 bp and 16,031 bp with an A + T content of 73.38% and 73.07%, respectively. Two neoephemerid mitogenomes had a similar gene size, base composition, and codon usage of protein-coding genes (PCGs), and the sequenced gene arrangements were consistent with the putative ancestral insect mitogenomes as understood today. The most variable gene of Furcatergalia mitogenomes was ND2, while the most conserved gene was COI. Meanwhile, the analysis of selection pressures showed that ND6 and ATP8 exhibited a relaxed purifying selection, and COI was under the strongest purifying selection. Phylogenetic trees reconstructed based on two concatenated nucleotide datasets using both maximum likelihood (ML) and Bayesian inference (BI) estimations yielded robust identical topologies. These results corroborated the monophyly of seven studied families and supported the family Leptophlebiidae as being of the basal lineage of Furcatergalia. Additionally, the sister-group relationship of Caenidae and Neoephemeridae was well supported. Methodologically, our present study provides a general reference for future phylogenetic studies of Ephemeroptera at the mitogenome level.


Author(s):  
Martin Stervander ◽  
William A Cresko

Abstract The fish order Syngnathiformes has been referred to as a collection of misfit fishes, comprising commercially important fish such as red mullets as well as the highly diverse seahorses, pipefishes, and seadragons—the well-known family Syngnathidae, with their unique adaptations including male pregnancy. Another ornate member of this order is the species mandarinfish. No less than two types of chromatophores have been discovered in the spectacularly colored mandarinfish: the cyanophore (producing blue color) and the dichromatic cyano-erythrophore (producing blue and red). The phylogenetic position of mandarinfish in Syngnathiformes, and their promise of additional genetic discoveries beyond the chromatophores, made mandarinfish an appealing target for whole genome sequencing. We used linked sequences to create synthetic long reads, producing a highly contiguous genome assembly for the mandarinfish. The genome assembly comprises 483 Mbp (longest scaffold 29 Mbp), has an N50 of 12 Mbp, and an L50 of 14 scaffolds. The assembly completeness is also high, with 92.6% complete, 4.4% fragmented, and 2.9% missing out of 4,584 BUSCO genes found in ray-finned fishes. Outside the family Syngnathidae, the mandarinfish represents one of the most contiguous syngnathiform genome assemblies to date. The mandarinfish genomic resource will likely serve as a high-quality outgroup to syngnathid fish, and furthermore for research on the genomic underpinnings of the evolution of novel pigmentation.


2021 ◽  
Author(s):  
Veilumuthu P ◽  
Nagarajan T ◽  
Sasikumar S ◽  
Siva R ◽  
J Godwin Christopher

Abstract Streptomyces species is one among the dominant group of bacteria in the family Actinobacteria with a rich repertoire of secondary metabolites. Secondary metabolites with antimicrobial activity and plant growth promotor have been isolated from various Streptomyces sp. Here in this investigation, we present the draft genome of a new species, Streptomyces sp. VITGV156 isolated from healthy tomato plant (Lycopersicon esculentum) which has some rare antimicrobial secondary metabolites, like coelichelin, fluostatins, vicenistatin, nystatin, sipanmycin, and informatipeptin. The genome is 8.18 Mb in size with 6,259 protein coding genes. The average GC content of the genome is 72.61 %. Preliminary analysis with antiSMASH 6.0 revealed the presence of 29 biosynthetic gene clusters for the synthesis of potential secondary metabolites. These includes 4 NRPS (non – ribosomal peptide synthetase), 7 PKS (Polyketide Synthases), 2 RiPP (Ribosomally synthesized and post-translationally modified peptides) clusters. When we look into genes associated with secondary metabolites, 406 genes are present which includes 184 genes for cofactor and vitamins, 72 genes for terpenoids and polyketides, 70 genes for xenobiotics and 80 genes for other metabolites are present. Comparative genome analysis of VITGV156 with its closest neighbor Streptomyces luteus strain TRM45540 revealed ANI 91.22% and dDDH value 44.00%.


2020 ◽  
Vol 5 (1) ◽  
pp. 119-130 ◽  
Author(s):  
C.-C. Chen ◽  
B. Cao ◽  
T. Hattori ◽  
B.-K. Cui ◽  
C.-Y. Chen ◽  
...  

Paratrichaptum accuratum is a large conspicuous polypore fungus growing on dead or living angiosperm trees in subtropical-boreal areas of China, Indonesia, Japan, and Taiwan. The present study places P. accuratum in the family Gloeophyllaceae that belongs to the order Gloeophyllales within Agaricomycetes (Basidiomycota), based on evidence derived from morphological and ecological characteristics, and phylogenetic analyses of sequences of nuclear rDNA regions (5.8S, nuc 18S, nuc 28S) and protein-coding genes (rpb1, rpb2, and tef1). The analyses presented in this study also give strong support for including Jaapia in Gloeophyllaceae and Gloeophyllales. Thus, the names Jaapiaceae and Jaapiales are considered here as synonyms of Gloeophyllaceae and Gloeophyllales. Since Paratrichaptum represents the earliest diverging lineage in Gloeophyllales, pileate basidiocarps and brown rot appear to be ancestral states of Gloeophyllales. Paratrichaptum accuratum may represent a relic species, according to its phylogenetic position, peculiar distribution pattern and rare occurrence.


2020 ◽  
Vol 110 (9) ◽  
pp. 1503-1506
Author(s):  
Olufemi A. Akinsanmi ◽  
Lilia C. Carvalhais

Pseudocercospora macadamiae causes husk spot in macadamia in Australia. Lack of genomic resources for this pathogen has restricted acquiring knowledge on the mechanism of disease development, spread, and its role in fruit abscission. To address this gap, we sequenced the genome of P. macadamiae. The sequence was de novo assembled into a draft genome of 40 Mb, which is comparable to closely related species in the family Mycosphaerellaceae. The draft genome comprises 212 scaffolds, of which 99 scaffolds are over 50 kb. The genome has a 49% GC content and is predicted to contain 15,430 protein-coding genes. This draft genome sequence is the first for P. macadamiae and represents a valuable resource for understanding genome evolution and plant disease resistance.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7830 ◽  
Author(s):  
Eugeny V. Gruzdev ◽  
Vitaly V. Kadnikov ◽  
Alexey V. Beletsky ◽  
Andrey V. Mardanov ◽  
Nikolai V. Ravin

Background Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. Methods The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. Results The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes among the parasitic Orobanchaceae. All genes related to photosynthesis, including the ATP synthase genes, had been lost, whereas most housekeeping genes remain intact. The plastome contains two divergent, but probably intact clpP genes. Intron loss had occurred in some protein-coding and tRNA genes. Phylogenetic analysis yielded a fully resolved tree for the Orobanchaceae, with Diphelypaea being a sister group to Orobanche sect. Orobanche.


2020 ◽  
Author(s):  
Zhenchao Zhang ◽  
Zhongliang Dai ◽  
Yuemei Yao ◽  
Yongfei Pan ◽  
Guosheng Sun ◽  
...  

Abstract Backgrounds: Broccoli (Brassica. oleracea var. italica L.) is known as one of the most nutritionally rich vegetables, as well as rich in functional components that benefit to health. The main purposes of this research were sequencing, assembling and annotation of chloroplast genome of broccoli based on Illumina HiSeq2500 sequencing platform. Results: The size of the broccoli cp genome is 153,364 bp, including two inverted repeat (IR) regions of 26,197 bp each, separated by a small single copy (SSC) region of 17,834 bp and a large single copy (LSC) region of 83,136 bp. The GC content of the complete genome is 36.36%, while those of SSC, LSC, and IR are 29.1%, 34.15% and 42.35%, respectively. It harbors 134 functional genes, including 87 protein-coding genes, 39 tRNAs and 8 rRNAs, with 31 duplicates in the IRs. The most abundant amino acid in the protein-coding genes is leucine, while the least is cysteine. Codon usage frequency showed bias for A/T-ending codons in the cp genome. In the repeat structure analysis, a total of 34 repeat sequences and 291 simple sequence repeat (SSRs) were detected in the work. Although cp genomic structure and size are highly conserved, the SC-IR boundary regions are variable between the 7 cp genomes. The phylogenetic relationships based on complete cp genome from 9 species suggest that B. oleracea var. italica is closely related to Brassica juncea. Conclusions: The complete cp genome sequence was obtained and annotated for broccoli for the first time. The information acquired from this research will be useful for further species identification, population genetics and biological research of broccoli.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Linlin Zhao ◽  
Shengyong Xu ◽  
Zhiqiang Han ◽  
Qi Liu ◽  
Wensi Ke ◽  
...  

Abstract Argyrosomus japonicus is an economically and ecologically important fish species in the family Sciaenidae with a wide distribution in the world’s oceans. Here, we report a high-quality, chromosome-level genome assembly of A. japonicus based on PacBio and Hi-C sequencing technology. A 673.7-Mb genome containing 282 contigs with an N50 length of 18.4 Mb was obtained based on PacBio long reads. These contigs were further ordered and clustered into 24 chromosome groups based on Hi-C data. In addition, a total of 217.2 Mb (32.24% of the assembled genome) of sequences were identified as repeat elements, and 23,730 protein-coding genes were predicted based on multiple approaches. More than 97% of BUSCO genes were identified in the A. japonicus genome. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of A. japonicus but also lays a solid foundation for the study of Sciaenidae evolution.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Nie ◽  
Yi-Tian Fu ◽  
Yu Zhang ◽  
Yuan-Ping Deng ◽  
Wei Wang ◽  
...  

Abstract Background Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera. Methods Herein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods. Results The complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659 bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100). Conclusions These datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document