scholarly journals Genome assembly of the common pheasant Phasianus colchicus, a model for speciation and ecological genomics

Author(s):  
Yang Liu ◽  
Simin Liu ◽  
Nan Zhang ◽  
De Chen ◽  
Pinjia Que ◽  
...  

Abstract The common pheasant (Phasianus colchicus) in the order Galliformes and the family Phasianidae, has 30 subspecies distributed across its native range in the Palearctic realm and has been introduced to Europe, North America, and Australia. It is an important game bird often subjected to wildlife management as well as a model species to study speciation, biogeography and local adaptation. However, the genomic resources for the common pheasant are generally lacking. We sequenced a male individual of the subspecies torquatus of the common pheasant with the Illumina Hiseq platform. We obtained 94.88 Gb of usable sequences by filtering out low-quality reads of the raw data generated. This resulted in a 1.02 Gb final assembly, which equals the estimated genome size. BUSCO analysis using chicken as a model showed that 93.3% of genes were complete. The contig N50 and scaffold N50 sizes were 178 kb and 10.2 Mb, respectively. All these indicate that we obtained a high-quality genome assembly. We annotated 16,485 protein-coding genes and 123.3 Mb (12.05% of the genome) of repetitive sequences by ab initio and homology-based prediction. Furthermore, we applied a RAD-sequencing approach for another 45 individuals of seven representative subspecies in China and identified 4,376,351 novel single nucleotide polymorphism (SNPs) markers. Using this unprecedented dataset, we uncovered the geographic population structure and genetic introgression among common pheasants in China. Our results provide the first high-quality reference genome for the common pheasant and a valuable genome-wide SNP database for studying population genomics and demographic history.

2019 ◽  
Author(s):  
Yang Liu ◽  
Simin Liu ◽  
Nan Zhang ◽  
De Chen ◽  
Pinjia Que ◽  
...  

AbstractThe common pheasant (Phasianus colchicus) in the order Galliformes and the family Phasianidae, has 30 subspecies distributed across its native range in the Palearctic realm and has been introduced to Europe, North America, and Australia. It is an important game bird often subjected to wildlife management as well as a model species to study speciation, biogeography and local adaptation. However, the genomic resources for the common pheasant are generally lacking. We sequenced a male individual of the subspecies torquatus of the common pheasant with the Illumina Hiseq platform. We obtained 94.88 Gb of usable sequences by filtering out low-quality reads of the raw data generated. This resulted in a 1.02 Gb final assembly, which equals the estimated genome size. BUSCO analysis using chicken as a model showed that 93.3% of genes were complete. The contig N50 and scaffold N50 sizes were 178 kb and 10.2 Mb, respectively. All these indicate that we obtained a high-quality genome assembly. We annotated 16,485 protein-coding genes and 123.3 Mb (12.05 % of the genome) of repetitive sequences by ab initio and homology-based prediction. Furthermore, we applied a RAD-sequencing approach for another 45 individuals of seven representative subspecies in China and identified 4,376,351 novel single nucleotide polymorphism (SNPs) markers. Using this unprecedented dataset, we uncover the geographic population structure and genetic introgression among common pheasants in China. Our results provide the first high-quality reference genome for the common pheasant and a valuable genome-wide SNP database for studying population genomics and demographic history.


2019 ◽  
Author(s):  
Simin Liu ◽  
Yang Liu ◽  
Edouard Jelen ◽  
Mansour Alibadian ◽  
Cheng-Te Yao ◽  
...  

ABSTRACTAimHistorical factors such as Pleistocene climate cycles and associated environmental changes have influenced the phylogeographic structure and demographic dynamics of many species. Resulting patterns not only depend on species’ life-history but also vary regionally. Consequently, different populations of species with large ranges over different biomes might have experienced divergent drivers of diversification and show different population histories. Such a representative species is the common pheasant Phasianus colchicus, an ecological generalist with a wide distribution in the Palearctic and at the edge of the Oriental region. We aimed at identifying distinct phylogeographic lineages of the common pheasant and investigating their evolutionary trajectories.Study locationAsiaMethodsWe used coalescent approaches to describe the phylogeographic structure and to reconstruct the spatio-temporal diversification and demographic history of the common pheasant based on a comprehensive geographic sampling of 265 individuals genotyped at seven nuclear and two mitochondrial loci.ResultsThe common pheasant diversified during the late Pleistocene into eight distinct evolutionary lineages which only partly correspond to traditional morphological groups. It originated at the edge of the Qinghai-Tibetan plateau and spread from there to East and Central Asia. Only the widely distributed genetically uniform lowland lineage of East Asia showed a recent range and population expansion, starting during last glacial. More phylogeographic structure was found elsewhere with lineages showing no signs of recent range expansions. One lineage of subtropical south-central China this is the result of long-term isolation in a climatically stable and topographically complex region. In others from arid Central Asia and China, demographic and range expansions were impeded by repeated population fragmentation during dry glacial and recent aridification. Given such a phylogeographic structure and demographic scenarios among lineages, we proposed split the range-wide common pheasant into three species.Main conclusionsSpatio-temporal phylogeographic frameworks of widespread species complexes such as the common pheasant provide valuable opportunities to identify regionally divergent drivers of diversification.


2020 ◽  
Author(s):  
Tomas N. Generalovic ◽  
Shane A. McCarthy ◽  
Ian A. Warren ◽  
Jonathan M.D. Wood ◽  
James Torrance ◽  
...  

AbstractBackgroundHermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important mass reared entomological resource for bioconversion of organic material into animal feed.ResultsWe generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudo-chromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a BUSCO completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 17,664 protein-coding genes using the BRAKER2 pipeline. We analysed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and the identification of an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of a lab population by assessing runs of homozygosity. This revealed a plethora of inbreeding events including recent long runs of homozygosity on chromosome five.ConclusionsRelease of this novel chromosome-scale BSF genome assembly will provide an improved platform for further genomic studies and functional characterisation of candidate regions of artificial selection. This reference sequence will provide an essential tool for future genetic modifications, functional and population genomics.


Author(s):  
Tomas N Generalovic ◽  
Shane A McCarthy ◽  
Ian A Warren ◽  
Jonathan M D Wood ◽  
James Torrance ◽  
...  

Abstract Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a BUSCO completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analysed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of a lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome five. Release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterisation of genes of interest and genetic modification of this economically important species.


2020 ◽  
Author(s):  
Yi Feng ◽  
Leslie Y. Beh ◽  
Wei-Jen Chang ◽  
Laura F. Landweber

AbstractCiliates are microbial eukaryotes with distinct somatic and germline genomes. Post-zygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programmed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. While many high-quality somatic genomes have been assembled, a high quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline SIGAR (Splitread Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short germline DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements.


2009 ◽  
Vol 78 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Petr Chloupek ◽  
Eva Voslářová ◽  
Pavel Suchý ◽  
Iveta Bedáňová ◽  
Vladimíra Pištěková ◽  
...  

The effects of varying periods of pre-sampling handling (1.5 min, 3 min, 4.5 min, 6 min) on selected biochemical indices were monitored in a group of 8–9-month-old common pheasants (Phasianus colchicus) kept at a pheasantry in Jinačovice, Czech Republic. The duration of pheasant handling (capture, restraint, and blood sampling) was positively correlated with plasma corticosterone (p < 0.001) and lactate (p < 0.05) levels. Negative correlations were found between the handling duration and glucose concentration (p < 0.01), and aspartate aminotransferase level (p < 0.05) in the blood plasma. A significant increase in corticosterone plasma concentrations and a decrease in glucose plasma concentrations were already found in blood samples taken after 3 min of capture in comparison to blood samples of pheasants taken within 1.5 min.


Gigabyte ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sven Winter ◽  
Stefan Prost ◽  
Jordi de Raad ◽  
Raphael T. F. Coimbra ◽  
Magnus Wolf ◽  
...  

Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the ‘benthic associated clade’ of the order Syngnathiformes. The ‘benthic associated clade’ so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in ‘long-snouted’ syngnatiformes such as seahorses and pipefishes. Findings Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies’ long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses.


2020 ◽  
Author(s):  
Zeyuan Chen ◽  
Özgül Doğan ◽  
Nadège Guiglielmoni ◽  
Anne Guichard ◽  
Michael Schrödl

AbstractBackgroundThe “Spanish” slug, Arion vulgaris Moquin-Tandon, 1855, is considered to be among the 100 worst pest species in Europe. It is common and invasive to at least northern and eastern parts of Europe, probably benefitting from climate change and the modern human lifestyle. The origin and expansion of this species, the mechanisms behind its outstanding adaptive success and ability to outcompete other land slugs are worth to be explored on a genomic level. However, a high-quality chromosome-level genome is still lacking.FindingsThe final assembly of A. vulgaris was obtained by combining short reads, linked reads, Nanopore long reads, and Hi-C data. The genome assembly size is 1.54 Gb with a contig N50 length of 8.6 Mb. We found a recent expansion of transposable elements (TEs) which results in repetitive sequences accounting for more than 75% of the A. vulgaris genome, which is the highest among all known gastropod species. We identified 32,518 protein coding genes, and 2,763 species specific genes were functionally enriched in response to stimuli, nervous system and reproduction. With 1,237 single-copy orthologs from A. vulgaris and other related mollusks with whole-genome data available, we reconstructed the phylogenetic relationships of gastropods and estimated the divergence time of stylommatophoran land snails (Achatina) and Arion slugs at around 126 million years ago, and confirmed the whole genome duplication event shared by them.ConclusionsTo our knowledge, the A. vulgaris genome is the first land slug genome assembly published to date. The high-quality genomic data will provide valuable genetic resources for further phylogeographic studies of A. vulgaris origin and expansion, invasiveness, as well as molluscan aquatic-land transition and shell formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jielong Zhou ◽  
Peifu Wu ◽  
Zhongping Xiong ◽  
Naiyong Liu ◽  
Ning Zhao ◽  
...  

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.


Sign in / Sign up

Export Citation Format

Share Document