scholarly journals ASYMMETRIC EFFECTS OF DELETIONS AND SUBSTITUTIONS ON HIGH NEGATIVE INTERFERENCE IN COLIPHAGE LAMBDA

Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 299-317
Author(s):  
G J Vance Makin ◽  
W Szybalski ◽  
F R Blattner

ABSTRACT Experiments have been performed to help clarify the role of nonhomologies in phage λ recombination. Three-factor crosses were carried out, and the frequencies of single and double recombinants in the two adjoining intervals were compared when the central marker was either a double point mutation (v1v3) or deletion (rex-cI deletion) or nonhomologous substitution (imm434). In all cases the lefthand marker was a bio substitution (Fec- phenotype, which does not permit plating on recA  -), and the righthand marker was an amber mutation in gene O. Experiments were performed in all four possible arrangements of the central and rightward markers, while selecting for the Fec+ phenotype on the recA  - host. As anticipated, high negative interference (HNI) was observed with point mutations, but when the central marker was a substitution nonhomology, HNI was reduced about tenfold. Surprisingly, when the central marker was a simple deletion, a dramatic asymmetry in results was observed, with HNI being exhibited only when the central deletion marker was acquired by the double recombinant. These results indicate that under normal conditions (red  +, gam  +, rec  +) and with noninhibited DNA replication, recombination in coliphage λ entails a highly asymmetric step that could be at the level of strand transfer or mismatch repair.

Author(s):  
Sk. Sarif Hassan ◽  
Pabitra Pal Choudhury ◽  
Pallab Basu ◽  
Siddhartha Sankar Jana

AbstractA global emergency due to the COVID-19 pandemic demands various studies related to genes and genomes of the SARS-CoV2. Among other important proteins, the role of accessory proteins are of immense importance in replication, regulation of infections of the coronavirus in the hosts. The largest accessory proteins in the SARS-CoV2 genome is ORF3a which modulates the host response to the virus infection and consequently it plays an important role in pathogenesis. In this study, an attempt is made to decipher the conservation of nucleotides, dimers, codons and amino acids in the ORF3a genes across thirty two genomes of Indian patients. ORF3a gene possesses single and double point mutations in Indian SARS-CoV2 genomes suggesting the change of SARS-CoV2’s virulence property in Indian patients. We find that the parental origin of the ORF3a gene over the genomes of SARS-CoV2 and Pangolin-CoV is same from the phylogenetic analysis based on conservations of nucleotides and so on. This study highlights the accumulation of mutation on ORF3a in Indian SARS-CoV2 genomes which may provide the designing therapeutic approach against SARS-CoV2.


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


2021 ◽  
pp. 1-7
Author(s):  
Marie Monaghan ◽  
Charlotte Loh ◽  
Stephen Jones ◽  
Agyepong Oware ◽  
Kathryn Urankar ◽  
...  

Here, we describe a five year old girl with congenital HIV who had a six-week onset of rapidly deteriorating mobility and progressive proximal muscle weakness, associated with a raised Creatine Kinase (CK) level of 4330 U/L [25–200 U/L], subsequently diagnosed with an inflammatory myositis. Potential causes were investigated by paediatric neurology and immunology teams. Her viral load had been undetectable over the preceding two years, excluding a primary HIV myositis. While MRI scanning did not show evidence of definite myositis, a muscle biopsy showed evidence of an inflammatory process, comprising a moderate endomysial, perimysial and perivascular mononuclear (CD8 + T cell) infiltrate with increased MHC expression. No particular features of dermatomyositis or immune-mediated necrotising myopathy were identified and there were no features of an inclusion body myositis. Given the absence of active HIV infection, the role of anti-retroviral medications was considered. She had had a recent switch in medication, from twice daily Raltegravir (an Integrase Strand Transfer Inhibitor, INSTI) to once daily Dolutegravir (an INSTI) while continuing on an established daily protocol of Abacavir and Lamivudine (Nucleoside Reverse Transcriptase Inhibitors). Changing the Dolutegravir back to Raltegravir, in combination with continuing Lamivudine and Abacavir for two months made no difference to her weakness or CK levels. Moreover, this drug regimen had been well-tolerated over the preceding 19 month period. Changing the anti-retroviral regime completely to a single drug class (Protease Inhibitors) of Ritonavir and Darunavir, resulted in a dramatic improvement in her symptomatology. Within ten days she regained the ability to stand and walk, with a reduction in her CK from 1700 U/L at time of switch to 403 U/L [25–200]. This case highlights the potential risk of developing inflammatory myositis from anti-retrovirals even 19 months into treatment.


2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Sabino Pacheco ◽  
Isabel Gómez ◽  
Jorge Sánchez ◽  
Blanca-Ines García-Gómez ◽  
Mario Soberón ◽  
...  

ABSTRACT Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity.


Author(s):  
Rosemarie Lloyd

AbstractThis study had two main aims. (1) To examine the role of discretionary effort (DE) in the multidimensional performance domain consisting of in-role behaviour (IRB) and organisational citizenship behaviour (OCB); and (2) to assess whether skills and autonomy are important predictors of DE and show variance in common with DE over and above IRB and OCB. A managers/supervisors sample (n = 476) and a sample with both managerial and nonmanagerial employees (n = 424) were employed. Confirmatory factor analyses showed that the three factor hierarchical model was superior compared to three other models tested, indicating that DE is a separate construct to both IRB and OCB but together with these forms part of the performance domain. Regression analysis showed that both skills and autonomy are important predictors of DE; however, only autonomy explained variance in DE over and above IRB, OCB and skills. Together these results add to the construct validity of DE. Implications and suggestions for future research are discussed.


2002 ◽  
Vol 364 (3) ◽  
pp. 711-717 ◽  
Author(s):  
Barry K. DERHAM ◽  
John J. HARDING

The role of α-crystallin, a small heat-shock protein and chaperone, may explain how the lens stays transparent for so long. α-Crystallin prevents the aggregation of other lens crystallins and proteins that have become unfolded by ‘trapping’ the protein in a high-molecular-mass complex. However, during aging, the chaperone function of α-crystallin becomes compromised, allowing the formation of light-scattering aggregates that can proceed to form cataracts. Within the central part of the lens there is no turnover of damaged protein, and therefore post-translational modifications of α-crystallin accumulate that can reduce chaperone function; this is compounded in cataract lenses. Extensive in vitro glycation, carbamylation and oxidation all decrease chaperone ability. In the present study, we report the effect of the modifiers malondialdehyde, acetaldehyde and methylglyoxal, all of which are pertinent to cataract. Also modification by aspirin, which is known to delay cataract and other diseases, has been investigated. Recently, two point mutations of arginine residues were shown to cause congenital cataract. 1,2-Cyclohexanedione modifies arginine residues, and the extent of modification needed for a change in chaperone function was investigated. Only methylglyoxal and extensive modification by 1,2-cyclohexanedione caused a decrease in chaperone function. This highlights the robust nature of α-crystallin.


2016 ◽  
Vol 44 (14) ◽  
pp. 6883-6895 ◽  
Author(s):  
Andrew Woodman ◽  
Jamie J. Arnold ◽  
Craig E. Cameron ◽  
David J. Evans

Abstract Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3′ non-coding region we have further developed a cell-based assay (the 3′CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process.


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2126-2132 ◽  
Author(s):  
Thamar B. van Dijk ◽  
Eric Caldenhoven ◽  
Jan A.M. Raaijmakers ◽  
Jan-Willem J. Lammers ◽  
Leo Koenderman ◽  
...  

Eosinophil-derived neurotoxin (EDN) found in the granules of human eosinophils is a cationic ribonuclease toxin. Expression of the EDN gene (RNS2) in eosinophils is dependent on proximal promoter sequences in combination with an enhancer located in the first intron. We further define here the active region of the intron using transfections in differentiated eosinophilic HL60 cells. We show that a region containing a tandem PU.I binding site is important for intronic enhancer activity. This region binds multiple forms of transcription factor PU.I as judged by gel-shift analysis and DNA affinity precipitation. Importantly, introducing point mutations in the PU.I site drastically reduces the intronic enhancer activity, showing the importance of PU.I for expression of EDN in cells of the eosinophilic lineage.


Sign in / Sign up

Export Citation Format

Share Document