scholarly journals Suppressors of a gpa1 mutation cause sterility in Saccharomyces cerevisiae.

Genetics ◽  
1988 ◽  
Vol 119 (4) ◽  
pp. 797-804
Author(s):  
I Miyajima ◽  
N Nakayama ◽  
M Nakafuku ◽  
Y Kaziro ◽  
K Arai ◽  
...  

Abstract The Saccharomyces cerevisiae GPA1 gene encodes a protein highly homologous to the alpha subunit of mammalian G proteins and is essential for haploid cell growth. We have selected 77 mutants able to suppress the lethality resulting from disruption of GPA1 (gpa1::HIS3). Two strains bearing either of two recessive mutations, sgp1 and sgp2, in combination with the disruption mutation, showed a cell type nonspecific sterile phenotype, yet expressed the major alpha-factor gene (MF alpha 1) as judged by the ability to express a MF alpha 1-lacZ fusion gene. The sgp1 mutation was closely linked to gpa1::HIS3 and probably occurred at the GPA1 locus. The sgp2 mutation was not linked to GPA1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11 and ste12). sgp2 GPA1 cells showed a fertile phenotype, indicating that the mating defect caused by sgp2 is associated with the loss of GPA1 function. While expression of a FUS1-lacZ fusion gene was induced in wild-type cells by the addition of alpha-factor, mutants bearing sgp1 or sgp2 as well as gpa1::HIS3 constitutively expressed FUS1-lacZ. These observations suggest that GPA1 (SGP1) and SGP2 are involved in mating factor-mediated signal transduction, which causes both cell cycle arrest in the late G1 phase and induction of genes necessary for mating such as FUS1.

Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 463-476 ◽  
Author(s):  
A Bender ◽  
G F Sprague

Abstract Saccharomyces cerevisiae has two haploid cell types, a and alpha, each of which produces a unique set of proteins that participate in the mating process. We sought to determine the minimum set of proteins that must be expressed to allow mating and to confer specificity. We show that the capacity to synthesize alpha-factor pheromone and a-factor receptor is sufficient to allow mating by mat alpha 1 mutants, mutants that normally do not express any alpha- or a-specific products. Likewise, the capacity to synthesize a-factor receptor and alpha-factor pheromone is sufficient to allow a ste2 ste6 mutants, which do not produce the normal a cell pheromone and receptor, to mate with wild-type a cells. Thus, the a-factor receptor and alpha-factor pheromone constitute the minimum set of alpha-specific proteins that must be produced to allow mating as an alpha cell. Further evidence that the pheromones and pheromone receptors are important determinants of mating specificity comes from studies with mat alpha 2 mutants, cells that simultaneously express both pheromones and both receptors. We created a series of strains that express different combinations of pheromones and receptors in a mat alpha 2 background. These constructions reveal that mat alpha 2 mutants can be made to mate as either a cells or as alpha cells by causing them to express only the pheromone and receptor set appropriate for a particular cell type. Moreover, these studies show that the inability of mat alpha 2 mutants to respond to either pheromone is a consequence of two phenomena: adaptation to an autocrine response to the pheromones they secrete and interference with response to alpha factor by the a-factor receptor.


1986 ◽  
Vol 6 (7) ◽  
pp. 2443-2451 ◽  
Author(s):  
A Percival-Smith ◽  
J Segall

A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.


1980 ◽  
Vol 85 (3) ◽  
pp. 811-822 ◽  
Author(s):  
L H Hartwell

Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone.


1988 ◽  
Vol 8 (3) ◽  
pp. 1309-1318 ◽  
Author(s):  
S Michaelis ◽  
I Herskowitz

The Saccharomyces cerevisiae pheromone a-factor is produced by a cells and interacts with alpha cells to cause cell cycle arrest and other physiological responses associated with mating. Two a-factor structural genes, MFA1 and MFA2, have been previously cloned with synthetic probes based on the a-factor amino acid sequence (A. Brake, C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather, cited in M.-J. Gething [ed.], Protein transport and secretion, 1985). We have examined the function of these genes in a-factor production and mating by construction and analysis of chromosomal null mutations. mfa1 and mfa2 single mutants each exhibited approximately half the wild-type level of a-factor activity and were proficient in mating, whereas the mfa1 mfa2 double mutant produced no a-factor and was unable to mate. These results demonstrate that both genes are functional, that each gene makes an equivalent contribution to the a-factor activity and mating capacity of a cells, and that a-factor plays an essential role in mating. Strikingly, exogenous a-factor did not alleviate the mating defect of the double mutant, suggesting that an a cell must be producing a-factor to be an effective mating partner.


1988 ◽  
Vol 8 (3) ◽  
pp. 1309-1318 ◽  
Author(s):  
S Michaelis ◽  
I Herskowitz

The Saccharomyces cerevisiae pheromone a-factor is produced by a cells and interacts with alpha cells to cause cell cycle arrest and other physiological responses associated with mating. Two a-factor structural genes, MFA1 and MFA2, have been previously cloned with synthetic probes based on the a-factor amino acid sequence (A. Brake, C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather, cited in M.-J. Gething [ed.], Protein transport and secretion, 1985). We have examined the function of these genes in a-factor production and mating by construction and analysis of chromosomal null mutations. mfa1 and mfa2 single mutants each exhibited approximately half the wild-type level of a-factor activity and were proficient in mating, whereas the mfa1 mfa2 double mutant produced no a-factor and was unable to mate. These results demonstrate that both genes are functional, that each gene makes an equivalent contribution to the a-factor activity and mating capacity of a cells, and that a-factor plays an essential role in mating. Strikingly, exogenous a-factor did not alleviate the mating defect of the double mutant, suggesting that an a cell must be producing a-factor to be an effective mating partner.


1986 ◽  
Vol 6 (7) ◽  
pp. 2443-2451
Author(s):  
A Percival-Smith ◽  
J Segall

A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.


Genetics ◽  
1990 ◽  
Vol 126 (2) ◽  
pp. 301-308
Author(s):  
F R Cross

Abstract A dominant mutation (DAF2-2) resulting in resistance to the mating pheromone alpha-factor in Saccharomyces cerevisiae MATa cells was identified and characterized genetically. Whereas wild-type cells induce a high level of the FUS1 mRNA from a low baseline on exposure to alpha-factor, DAF2-2 cells were constitutive producers of an intermediate level of FUS1 RNA; the level was increased only modestly by alpha-factor. FUS1 constitutivity required STE4, STE5 and STE18, but did not require STE2, the alpha-factor receptor gene. DAF2-2 suppressed the alpha-factor supersensitivity of a STE2 C-terminal truncation, and suppressed lethality due to scg1 mutations. Thus DAF2-2 may act by uncoupling the signaling pathway from alpha-factor binding at some point in the pathway between Scg1 inactivation and the action of Ste4, Ste5 and Ste18; this uncoupling might occur at the expense of partial constitutive activation of the pathway. DAF2-2 suppressed the unconditional cell-cycle arrest phenotype of a dominant "constitutive signaling" allele of STE4 (STE4Hpl), although the constitutive FUS1 phenotype of DAF2-2 was suppressed by ste4 null mutations; therefore DAF2-2 may directly affect the performance of the STE4 step.


1987 ◽  
Vol 7 (12) ◽  
pp. 4204-4210
Author(s):  
M A Osley ◽  
D Lycan

Using a Saccharomyces cerevisiae strain containing an integrated copy of an H2A-lacZ fusion gene, we screened for mutants which overexpressed beta-galactosidase as a way to identify genes which regulate transcription of the histone genes. Five recessive mutants with this phenotype were shown to contain altered regulatory genes because they had lost repression of HTA1 transcription which occurs upon inhibition of chromosome replication (D. E. Lycan, M. A. Osley, and L. Hereford, Mol. Cell. Biol. 7:614-621, 1987). Periodic transcription was affected in the mutants as well, since the HTA1 gene was transcribed during the G1 and G2 phases of the cell cycle, periods in the cell cycle when this gene is normally not expressed. A similar loss of cell cycle-dependent transcription was noted for two of the three remaining histone loci, while the HO and CDC9 genes continued to be expressed periodically. Using isolated promoter elements inserted into a heterologous cycl-lacZ fusion gene, we demonstrated that the mutations fell in genes which acted through a negative site in the TRT1 H2A-H2B promoter.


1991 ◽  
Vol 11 (10) ◽  
pp. 5251-5258
Author(s):  
B Zanolari ◽  
H Riezman

The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.


2000 ◽  
Vol 191 (8) ◽  
pp. 1281-1292 ◽  
Author(s):  
Raelene J. Grumont ◽  
Steve Gerondakis

In lymphocytes, the Rel transcription factor is essential in establishing a pattern of gene expression that promotes cell proliferation, survival, and differentiation. Here we show that mitogen-induced expression of interferon (IFN) regulatory factor 4 (IRF-4), a lymphoid-specific member of the IFN family of transcription factors, is Rel dependent. Consistent with IRF-4 functioning as a repressor of IFN-induced gene expression, the absence of IRF-4 expression in c-rel−/− B cells coincided with a greater sensitivity of these cells to the antiproliferative activity of IFNs. In turn, enforced expression of an IRF-4 transgene restored IFN modulated c-rel−/− B cell proliferation to that of wild-type cells. This cross-regulation between two different signaling pathways represents a novel mechanism that Rel/nuclear factor κB can repress the transcription of IFN-regulated genes in a cell type–specific manner.


Sign in / Sign up

Export Citation Format

Share Document