scholarly journals Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo.

Genetics ◽  
1990 ◽  
Vol 126 (3) ◽  
pp. 593-605 ◽  
Author(s):  
P E Mains ◽  
K J Kemphues ◽  
S A Sprunger ◽  
I A Sulston ◽  
W B Wood

Abstract We describe interactions between maternal-effect lethal mutations in four genes of Caenorhabditis elegans whose products appear to be involved in the meiotic and mitotic divisions of the one-cell embryo. Mitosis is disrupted by two dominant temperature-sensitive gain-of-function maternal-effect lethal mutations, mei-1(ct46) and mel-26(ct61), and by recessive loss-of-function maternal-effect lethal mutations of zyg-9. The phenotypic defects resulting from these mutations are similar. Doubly mutant combinations show a strong enhancement of the maternal-effect lethality under semipermissive conditions, suggesting that the mutant gene products interact. We isolated 15 dominant suppressors of the gain-of-function mutation mei-1(ct46). Thirteen of these suppressors are apparently intragenic, but 11 of them suppress in trans as well as cis. Two extragenic suppressors define a new gene, mei-2. The suppressor mutations in these two genes also result in recessive maternal-effect lethality, but with meiotic rather than mitotic defects. Surprisingly, most of these suppressors are also able to suppress mel-26(ct61) in addition to mei-1(ct46). The products of the four genes mei-1, mei-2, zyg-9 and mel-26 could be responsible for some of the specialized features that distinguish the meiotic from the mitotic divisions in the one-cell embryo.

Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Nancy L Mitenko ◽  
James R Eisner ◽  
John R Swiston ◽  
Paul E Mains

Abstract Dominant gain-of-function mutations can give unique insights into the study of gene function. In addition, gain-of-function mutations, unlike loss-of-function alleles, are not biased against the identification of genetically redundant loci. To identify novel genetic functions active during Caenorhabditis elegans embryogenesis, we have collected a set of dominant temperature-sensitive maternal-effect embryonic lethal mutations. In a previous screen, we isolated eight such mutations, distributed among six genes. In the present study, we describe eight new dominant mutations that identify only three additional genes, yielding a total of 16 dominant mutations found in nine genes. Therefore, it appears that a limited number of C. elegans genes mutate to this phenotype at appreciable frequencies. Five of the genes that we identified by dominant mutations have loss-of-function alleles. Two of these genes may lack loss-of-function phenotypes, indicating that they are nonessential and so may represent redundant loci. Loss-of-function mutations of three other genes are associated with recessive lethality, indicating nonredundancy.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3133-3140 ◽  
Author(s):  
J.L. Watts ◽  
B. Etemad-Moghadam ◽  
S. Guo ◽  
L. Boyd ◽  
B.W. Draper ◽  
...  

The generation of asymmetry in the one-cell embryo of Caenorhabditis elegans is necessary to establish the anterior-posterior axis and to ensure the proper identity of early blastomeres. Maternal-effect lethal mutations with a partitioning defective phenotype (par) have identified several genes involved in this process. We have identified a new gene, par-6, which acts in conjunction with other par genes to properly localize cytoplasmic components in the early embryo. The early phenotypes of par-6 embryos include the generation of equal-sized blastomeres, improper localization of P granules and SKN-1 protein, and abnormal second division cleavage patterns. Overall, this phenotype is very similar to that caused by mutations in a previously described gene, par-3. The probable basis for this similarity is revealed by our genetic and immunolocalization results; par-6 acts through par-3 by localizing or maintaining the PAR-3 protein at the cell periphery. In addition, we find that loss-of-function par-6 mutations act as dominant bypass suppressors of loss-of-function mutations in par-2.


Genetics ◽  
1990 ◽  
Vol 125 (2) ◽  
pp. 351-369 ◽  
Author(s):  
P E Mains ◽  
I A Sulston ◽  
W B Wood

Abstract We undertook screens for dominant, temperature-sensitive, maternal-effect embryonic-lethal mutations of Caenorhabditis elegans as a way to identify certain classes of genes with early embryonic functions, in particular those that are members of multigene families and those that are required in two copies for normal development. The screens have identified eight mutations, representing six loci. Mutations at three of the loci result in only maternal effects on embryonic viability. Mutations at the remaining three loci cause additional nonmaternal (zygotic) effects, including recessive lethality or sterility and dominant male mating defects. Mutations at five of the loci cause visible pregastrulation defects. Three mutations appear to be allelic with a recessive mutation of let-354. Gene dosage experiments indicate that one mutation may be a loss-of-function allele at a haploin sufficient locus. The other mutations appear to result in gain-of-function "poison" gene products. Most of these become less deleterious as the relative dosage of the corresponding wild-type allele is increased; we show that relative self-progeny viabilities for the relevant hermaphrodite genotypes are generally M/+/+ greater than M/+ greater than M/M/+ greater than M/Df greater than M/M, where M represents the dominant mutant allele.


Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 145-157
Author(s):  
C Trent ◽  
W B Wood ◽  
H R Horvitz

Abstract We have characterized a novel dominant allele of the sex-determining gene her-1 of Caenorhabditis elegans. This allele, called n695, results in the incomplete transformation of XX animals into phenotypic males. Previously characterized recessive her-1 alleles transform XO animals into phenotypic hermaphrodites. We have identified five new recessive her-1 mutations as intragenic suppressors of n695. Three of these suppressors are weak, temperature-sensitive alleles. We show that the recessive her-1 mutations are loss-of-function alleles, and that the her-1(n695) mutation results in a gain-of-function at the her-1 locus. The existence of dominant and recessive alleles that cause opposite phenotypic transformations demonstrates that the her-1 gene acts to control sexual identity in C. elegans.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 879-886 ◽  
Author(s):  
E A Malone ◽  
J H Thomas

Abstract In Caenorhabditis elegans, formation of the developmentally arrested dauer larva is induced by high levels of a constitutively secreted pheromone. Synergy between two groups of incompletely penetrant dauer-constitutive (Daf-c) mutations has recently led to a proposal that these two groups of genes are partially redundant and function in two parallel pathways that regulate dauer formation. A possible weakness in this reasoning is that the mutations used to identify the synergy were specifically obtained as incompletely penetrant mutations. Here we use screens to identify new Daf-c alleles without any requirement for partial penetrance. Nevertheless, 22 of the 25 new mutations are incompletely penetrant mutations in 6 previously identified genes. Among these are mutations in daf-8 and daf-19, genes for which only one mutation had been previously identified. Also included in this group are three daf-1 alleles that do not exhibit the maternal rescue characteristic of other daf-1 alleles. Two of the 25 new mutations are fully penetrant and are alleles of daf-2, the one gene in which a fully penetrant mutation had been found earlier. Finally, one of the 25 new mutations is semidominant, temperature-sensitive, and identifies a new gene, daf-28. The results demonstrate that an incompletely penetrant Daf-c phenotype is characteristic of mutations in most Daf-c genes other than daf-2. This finding strengthens the hypothesis that a branched genetic pathway controls dauer formation.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 899-913 ◽  
Author(s):  
M Han ◽  
R V Aroian ◽  
P W Sternberg

Abstract During induction of the Caenorhabditis elegans hermaphrodite vulva by the anchor cell of the gonad, six multipotent vulval precursor cells (VPCs) have two distinct fates: three VPCs generate the vulva and the other three VPCs generate nonspecialized hypodermis. Genes that control the fates of the VPCs in response to the anchor cell signal are defined by mutations that cause all six VPCs to generate vulval tissue (Multivulva or Muv) or that cause all six VPCs to generate hypodermis (Vulvaless or Vul). Seven dominant Vul mutations were isolated as dominant suppressors of a lin-15 Muv mutation. These mutations are dominant alleles of the gene let-60, previously identified only by recessive lethal mutations. Our genetic studies of these dominant Vul recessive lethal mutations, recessive lethal mutations, intragenic revertants of the dominant Vul mutations, and the closely mapping semi-dominant multivulva lin-34 mutations suggest that: (1) loss-of-function mutations of let-60 are recessive lethal at a larval stage, but they also cause a Vul phenotype if the lethality is rescued maternally by a lin-34 gain-of-function mutation. (2) The dominant Vul alleles of let-60 are dominant negative mutations whose gene products compete with wild-type activity. (3) lin-34 semidominant Muv alleles are either gain-of-function mutations of let-60 or gain-of-function mutations of an intimately related gene that elevates let-60 activity. We propose that let-60 activity controls VPC fates. In a wild-type animal, reception by a VPC of inductive signal activates let-60, and it generates into a vulval cell type; in absence of inductive signal, let-60 activity is low and the VPC generates hypodermal cells. Our genetic interaction studies suggest that let-60 acts downstream of let-23 and lin-15 and upstream of lin-1 and lin-12 in the genetic pathway specifying the switch between vulval and nonvulval cell types.


Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 119-128
Author(s):  
M Rhys Dow ◽  
Paul E Mains

Abstract We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 741-753 ◽  
Author(s):  
D M Miller ◽  
C J Niemeyer ◽  
P Chitkara

Abstract The unc-4 gene of Caenorhabditis elegans encodes a homeodomain protein that defines synaptic input to ventral cord motor neurons. unc-4 mutants are unable to crawl backward because VA motor neurons are miswired with synaptic connections normally reserved for their sister cells, the VB motor neurons. These changes in connectivity are not accompanied by any visible effects upon neuronal morphology, which suggests that unc-4 regulates synaptic specificity but not axonal guidance or outgrowth. In an effort to identify other genes in the unc-4 pathway, we have devised a selection scheme for rare mutations that suppress the Unc-4 phenotype. We have isolated four, dominant, extragenic, allele-specific suppressors of unc-4(e2322ts), a temperature sensitive allele with a point mutation in the unc-4 homeodomain. Our data indicate that these suppressors are gain-of-function mutations in the previously identified unc-37 gene. We show that the loss-of-function mutation unc-37(e262) phenocopies the Unc-4 movement defect but does not prevent unc-4 expression or alter VA motor neuron morphology. These findings suggest that unc-37 functions with unc-4 to specify synaptic input to the VA motor neurons. We propose that unc-37 may be regulated by unc-4. Alternatively, unc-37 may encode a gene product that interacts with the unc-4 homeodomain.


Sign in / Sign up

Export Citation Format

Share Document