scholarly journals A novel dominant transformer allele of the sex-determining gene her-1 of Caenorhabditis elegans.

Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 145-157
Author(s):  
C Trent ◽  
W B Wood ◽  
H R Horvitz

Abstract We have characterized a novel dominant allele of the sex-determining gene her-1 of Caenorhabditis elegans. This allele, called n695, results in the incomplete transformation of XX animals into phenotypic males. Previously characterized recessive her-1 alleles transform XO animals into phenotypic hermaphrodites. We have identified five new recessive her-1 mutations as intragenic suppressors of n695. Three of these suppressors are weak, temperature-sensitive alleles. We show that the recessive her-1 mutations are loss-of-function alleles, and that the her-1(n695) mutation results in a gain-of-function at the her-1 locus. The existence of dominant and recessive alleles that cause opposite phenotypic transformations demonstrates that the her-1 gene acts to control sexual identity in C. elegans.

Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Nancy L Mitenko ◽  
James R Eisner ◽  
John R Swiston ◽  
Paul E Mains

Abstract Dominant gain-of-function mutations can give unique insights into the study of gene function. In addition, gain-of-function mutations, unlike loss-of-function alleles, are not biased against the identification of genetically redundant loci. To identify novel genetic functions active during Caenorhabditis elegans embryogenesis, we have collected a set of dominant temperature-sensitive maternal-effect embryonic lethal mutations. In a previous screen, we isolated eight such mutations, distributed among six genes. In the present study, we describe eight new dominant mutations that identify only three additional genes, yielding a total of 16 dominant mutations found in nine genes. Therefore, it appears that a limited number of C. elegans genes mutate to this phenotype at appreciable frequencies. Five of the genes that we identified by dominant mutations have loss-of-function alleles. Two of these genes may lack loss-of-function phenotypes, indicating that they are nonessential and so may represent redundant loci. Loss-of-function mutations of three other genes are associated with recessive lethality, indicating nonredundancy.


Genetics ◽  
1990 ◽  
Vol 126 (3) ◽  
pp. 593-605 ◽  
Author(s):  
P E Mains ◽  
K J Kemphues ◽  
S A Sprunger ◽  
I A Sulston ◽  
W B Wood

Abstract We describe interactions between maternal-effect lethal mutations in four genes of Caenorhabditis elegans whose products appear to be involved in the meiotic and mitotic divisions of the one-cell embryo. Mitosis is disrupted by two dominant temperature-sensitive gain-of-function maternal-effect lethal mutations, mei-1(ct46) and mel-26(ct61), and by recessive loss-of-function maternal-effect lethal mutations of zyg-9. The phenotypic defects resulting from these mutations are similar. Doubly mutant combinations show a strong enhancement of the maternal-effect lethality under semipermissive conditions, suggesting that the mutant gene products interact. We isolated 15 dominant suppressors of the gain-of-function mutation mei-1(ct46). Thirteen of these suppressors are apparently intragenic, but 11 of them suppress in trans as well as cis. Two extragenic suppressors define a new gene, mei-2. The suppressor mutations in these two genes also result in recessive maternal-effect lethality, but with meiotic rather than mitotic defects. Surprisingly, most of these suppressors are also able to suppress mel-26(ct61) in addition to mei-1(ct46). The products of the four genes mei-1, mei-2, zyg-9 and mel-26 could be responsible for some of the specialized features that distinguish the meiotic from the mitotic divisions in the one-cell embryo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mercedes M. Pérez-Jiménez ◽  
José M. Monje-Moreno ◽  
Ana María Brokate-Llanos ◽  
Mónica Venegas-Calerón ◽  
Alicia Sánchez-García ◽  
...  

AbstractAging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Lisa C Kadyk ◽  
Eric J Lambie ◽  
Judith Kimble

The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15° appear by DAPI staining to be uniformly arrested at the G2/M transition with <20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25° frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 119-128
Author(s):  
M Rhys Dow ◽  
Paul E Mains

Abstract We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
...  

Abstract To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the α-subunit of Go, have EC50s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goα, and presynaptic Goα-effectors are candidate VA molecular targets.


2004 ◽  
Vol 9 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Brenda R. Ellerbrock ◽  
Eileen M. Coscarelli ◽  
Mark E. Gurney ◽  
Timothy G. Geary

Caenorhabditis elegans contains 3 homologs of presenilin genes that are associated with Alzheimer s disease. Loss-of-function mutations in C. elegans genes cause a defect in egg laying. In humans, loss of presenilin-1 (PS1) function reduces amyloid-beta peptide processing from the amyloid protein precursor. Worms were screened for compounds that block egg laying, phenocopying presenilin loss of function. To accommodate even relatively high throughput screening, a semi-automated method to quantify egg laying was devised by measuring the chitinase released into the culture medium. Chitinase is released by hatching eggs, but little is shed into the medium from the body cavity of a hermaphrodite with an egg laying deficient ( egl) phenotype. Assay validation involved measuring chitinase release from wild-type C. elegans (N2 strain), sel-12 presenilin loss-of-function mutants, and 2 strains of C. elegans with mutations in the egl-36K+ channel gene. Failure to find specific presenilin inhibitors in this collection likely reflects the small number of compounds tested, rather than a flaw in screening strategy. Absent defined biochemical pathways for presenilin, this screening method, which takes advantage of the genetic system available in C. elegans and its historical use for anthelminthic screening, permits an entry into mechanism-based discovery of drugs for Alzheimer s disease. ( Journal of Biomolecular Screening 2004:147-152)


Genetics ◽  
1990 ◽  
Vol 125 (2) ◽  
pp. 351-369 ◽  
Author(s):  
P E Mains ◽  
I A Sulston ◽  
W B Wood

Abstract We undertook screens for dominant, temperature-sensitive, maternal-effect embryonic-lethal mutations of Caenorhabditis elegans as a way to identify certain classes of genes with early embryonic functions, in particular those that are members of multigene families and those that are required in two copies for normal development. The screens have identified eight mutations, representing six loci. Mutations at three of the loci result in only maternal effects on embryonic viability. Mutations at the remaining three loci cause additional nonmaternal (zygotic) effects, including recessive lethality or sterility and dominant male mating defects. Mutations at five of the loci cause visible pregastrulation defects. Three mutations appear to be allelic with a recessive mutation of let-354. Gene dosage experiments indicate that one mutation may be a loss-of-function allele at a haploin sufficient locus. The other mutations appear to result in gain-of-function "poison" gene products. Most of these become less deleterious as the relative dosage of the corresponding wild-type allele is increased; we show that relative self-progeny viabilities for the relevant hermaphrodite genotypes are generally M/+/+ greater than M/+ greater than M/M/+ greater than M/Df greater than M/M, where M represents the dominant mutant allele.


Sign in / Sign up

Export Citation Format

Share Document