Developmental analysis of the ovarian tumor gene during Drosophila oogenesis.

Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 191-202 ◽  
Author(s):  
C Rodesch ◽  
P K Geyer ◽  
J S Patton ◽  
E Bae ◽  
R N Nagoshi

Abstract Severe alleles of the ovarian tumor (otu) and ovo genes result in female sterility in Drosophila melanogaster, producing adult ovaries that completely lack egg chambers. We examined the developmental stage in which the agametic phenotype first becomes apparent. Germ cell development in embryos was studied using a strategy that allowed simultaneous labeling of pole cells with the determination of embryonic genotype. We found that ovo- or otu- XX embryonic germ cells were indistinguishable in number and morphology from those present in wild-type siblings. The effects of the mutations were not consistently manifested in the female germline until pupariation, and there was no evidence that either gene was required for germ cell viability at earlier stages of development. The requirement for otu function in the pupal and adult ovary is supported by temperature-shift experiments using a heat-inducible otu gene construct. We demonstrate that otu activity limited to prepupal stages was not sufficient to support oogenesis, while induction during the pupal and adult periods caused suppression of the otu mutant phenotype.

Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 253-263
Author(s):  
G L Sass ◽  
J D Mohler ◽  
R C Walsh ◽  
L J Kalfayan ◽  
L L Searles

Abstract Mutations at the ovarian tumor (otu) gene of Drosophila melanogaster cause female sterility and generate a range of ovarian phenotypes. Quiescent (QUI) mutants exhibit reduced germ cell proliferation; in oncogenic (ONC) mutants germ cells undergo uncontrolled proliferation generating excessive numbers of undifferentiated cells; the egg chambers of differentiated (DIF) mutants differentiate to variable degrees but fail to complete oogenesis. We have examined mutations caused by insertion and deletion of P elements at the otu gene. The P element insertion sites are upstream of the major otu transcription start sites. In deletion derivatives, the P element, regulatory regions and/or protein coding sequences have been removed. In both insertion and deletion mutants, the level of otu expression correlates directly with the severity of the phenotype: the absence of otu function produces the most severe QUI phenotype while the ONC mutants express lower levels of otu than those which are DIF. The results of this study demonstrate that the diverse mutant phenotypes of otu are the consequence of different levels of otu function.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 207-219 ◽  
Author(s):  
A. Bardsley ◽  
K. McDonald ◽  
R.E. Boswell

Mutations in the tudor locus of Drosophila affect two distinct determinative processes in embryogenesis; segmentation of the abdomen and determination of the primordial germ cells. The distribution of tudor protein during embryogenesis, and the effect of various mutations on its distribution, suggest that tudor protein may carry out these functions separately, based on its location in the embryo. The protein is concentrated in the posterior pole cytoplasm (germ plasm), where it is found in polar granules and mitochondria. Throughout the rest of the embryo, tudor protein is associated with the cleavage nuclei. Mutations in all maternal genes known to be required for the normal functioning of the germ plasm eliminate the posterior localization of tudor protein, whereas mutations in genes required for the functioning of the abdominal determinant disrupt the localization around nuclei. Analysis of embryos of different maternal genotypes indicates that the average number of pole cells formed is correlated with the amount of tudor protein that accumulates in the germ plasm. Our results suggest that tudor protein localized in the germ plasm is instrumental in germ cell determination, whereas nuclear-associated tudor protein is involved in determination of segmental pattern in the abdomen.


Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 265-278
Author(s):  
P K Geyer ◽  
J S Patton ◽  
C Rodesch ◽  
R N Nagoshi

Abstract The mutations in the ovarian tumor (otu) gene arrest oogenesis at several stages in development. A series of deletion mutations in the otu region were characterized, each of which causes the absence or reduction of the otu transcript. These alleles range from the most severe class, which results in ovaries lacking egg cysts, to relatively mild mutations that allow the development of late stage oocytes. Heteroallelic combinations of these mutations demonstrate that the phenotypic complexity of otu mutant ovaries is due to a dosage dependent requirement for otu activity. Reciprocal cross and developmental Northern blot studies suggest a maternal requirement for otu in the development of the female germline. In addition we demonstrate that the otu zygotic null phenotype is variable, ranging from the absence of cysts in the most extreme cases, to the presence of tumorous egg chambers.


Development ◽  
2021 ◽  
Author(s):  
Seoyeon Jang ◽  
Jeon Lee ◽  
Jeremy Mathews ◽  
Holly Ruess ◽  
Anna O. Williford ◽  
...  

Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms including post-translational modification of ribosome proteins (RPs), absence of specific RPs, and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs, RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis, and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical, and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 579-587 ◽  
Author(s):  
R.N. Nagoshi ◽  
J.S. Patton ◽  
E. Bae ◽  
P.K. Geyer

Gametogenesis in Drosophila requires sex-specific interactions between the soma and germline to control germ cell viability, proliferation, and differentiation. To determine what genetic components are involved in this interaction, we examined whether changes in the sexual identity of the soma affected the function of the ovarian tumor (otu) and ovo genes. These genes are required cell autonomously in the female germline for germ cell proliferation and differentiation. Mutations in otu and ovo cause a range of ovarian defects, including agametic ovaries and tumorous egg cysts, but do not affect spermatogenesis. We demonstrate that XY germ cells do not require otu when developing in testes, but become dependent on otu function for proliferation when placed in an ovary. This soma-induced requirement can be satisfied by the induced expression of the 98 × 10(3) M(r) OTU product, one of two isoforms produced by differential RNA splicing. These results indicate that the female somatic gonad can induce XY germ cells to become ‘female-like’ because they require an oogenesis-specific gene. In contrast, the requirement for ovo is dependent on a cell autonomous signal derived from the X:A ratio. We propose that differential regulation of the otu and ovo genes provides a mechanism for the female germline to incorporate both somatic and cell autonomous inputs required for oogenesis.


Author(s):  
N.N. Bondarenko, E.Yu. Andreeva , N.B. Filippova

A case of prenatal ultrasound diagnosis of a rare congenital ovarian tumor is presented. By ultrasound examination at 36–37 weeks of gestation the intra-abdominal mass 66  47  74 mm occupying the entire abdominal cavity was discovered. At 38 weeks of pregnancy spontaneous delivery occurred with girl weight 2840 g. On the eighth day after birth the child has been successfully undergone surgery. Histological examination revealed congenital germ-cell tumor with structures of dysgerminoma and yolk sac tumor.


Development ◽  
1975 ◽  
Vol 34 (1) ◽  
pp. 221-252
Author(s):  
Par Maria Fernandez ◽  
Jean-Claude Beetschen

1. At the feeding stage (st. 38), a high percentage (79 %) of Pleurodeles homozygous ac/ac larvae show bent tails after a persistent ascitic blister in the dorsal part of the fin, when embryonic development occurred at 12°C; about only 25 % of them are affected by abdominal and pericardic ascites; about 40 % can feed and survive. The larval phenotype is very different when embryonic development occurred at 23 °C, in which case tail growth appears to be normal, but 95 % larvae die, due to ascitic fluid collection in the abdominal and heart regions, marked anaemia and microcephaly. 2. The exchange of posterior neural plates and dorso-lateral epidermis between normal and mutant neurulae has shown that the localization of the blister in the dorsal fin is not dependent on autonomous properties of the mutant dorsal tissues, but should be considered as resulting from general disturbances in the mutant organism. 3. Experiments were performed, involving a temperature shift from 12 to 23°C or 23 to 12°C, occurring at various developmental stages from the end of gastrulation (stage 13) to the stage of spontaneous embryonic muscle contractions (stage 26). When the temperature shift was applied after the end of neurulation (stage 21), the caudal phenotype was statistically similar to that of larvae which had been bred continuously at the first temperature. Thus temperature-sensitive phases can be characterized between neurula stages 15 and 18 (for a 12–23° shift) or 15 and 21 (for a 23–12° shift). Similarly, abdominal ascites can be induced when embryos are kept at 23 °C till stage 23 (early tail-bud) only, and occurs much less frequently when embryos are kept at 12°C till stage 23 and then transferred to 23°C. 4. It could be concluded from these experiments that the caudal mutant phenotype is already temperature-determined during neurulation, before stage 21. Nevertheless, double temperature-shift experiments showed that the second shift could modify the results which would be obtained if the first shift only occurred. Paradoxical results were obtained, more than 90 % of the tail phenotypes being of the ‘warm type’ when the embryos were first kept at 12°C, then shifted up to 23 °C between stages 22 and 26, and shifted down again to 12°C. Such a treatment markedly lowers the percentage of bent tails (‘cold type’) from the percentage which would occur if ac/ac embryos were constantly kept at 23 °C after stage 21, but this longer warm treatment is of no effect of itself as compared to the case when the whole development occurs at 12°C (bent tails are predominant in this latter case). Thus, whereas the early determination of the position of the caudal blister can be considered as a stable phenomenon under given temperature conditions, it is not irreversible. 5. As compared to cold-bred larvae, thrice as many completely anaemic larvae (66 %) were obtained from ac/ac embryos kept at 23 °C between stages 21 and 26; this offers an opportunity for the experimental study of this anaemia. 6. Implications of these results for further analysis of temperature-sensitive mutations in cold-blooded vertebrates are suggested.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Samantha A. Russell ◽  
Kaitlin M. Laws ◽  
Greg J. Bashaw

ABSTRACT The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.


Development ◽  
1987 ◽  
Vol 101 (3) ◽  
pp. 591-603 ◽  
Author(s):  
K.L. Kuhn ◽  
J. Percy ◽  
M. Laurel ◽  
K. Kalthoff

We have isolated a laboratory strain of Chironomus samoensis in which determination of the anteroposterior egg polarity is disturbed. Most conspicuous is the spontaneous formation of ‘double abdomen’ embryos where head and thorax are replaced by a mirror image of the abdomen. Such double abdomens are found in about half of the egg clusters in this strain, which we call the spontaneous double abdomen (sda) strain as opposed to the normal (N) strain. Also observed in the sda strain, although less frequently, are ‘double cephalon’ embryos showing a mirror-image duplication of cephalic segments in the absence of thorax and abdomen. Moreover, embryos from the sda strain tend to form cells at the anterior pole resembling the pole cells at the posterior pole. Reciprocal crossings between the sda and the N strain indicate that the sda trait is inherited maternally. Spontaneous double abdomen formation is correlated with signs of disturbed egg architecture, including extruded yolk and detached cells. Double cephalons can also be generated by centrifuging embryos from the N strain, whereas centrifugation of sda embryos produces mostly double abdomens. Double abdomen formation can be induced experimentally by anterior u.v. irradiation of embryos from either strain. The sda trait and u.v. irradiation act in a synergistic fashion. The data suggest that the sda trait may be caused by one or more genomic mutations interfering indirectly with the activity of anterior determinants, i.e. cytoplasmic RNP particles necessary for the development of anterior segments. The sda defects may be ascribed to alterations in cytoskeletal components involved in anchoring anterior determinants and segregating them into anterior blastoderm cells.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 247-256
Author(s):  
Thomas G. Wilson

A new allele of the suppressor of forked [su(f)] mutation in Drosophila melanogaster has been found and designated 1(1)su(f)ts76a. It is temperature-sensitive for suppression of forked (f) and has additional temperature-sensitive phenotypes of lethality, female sterility, and abnormal bristle formation at 29 °C. It closely resembles two other conditional alleles of su(f), 1(1)su(f)ts67g and 1(1)ts726. Female sterility at 29 °C is characterized by both disorganized egg chambers in the ovarioles and also chorion-deficient oocytes. Both of these abnormalities may be the result of premature follicle cell death. The observations on 1(1)su(f)ts76a are consistent with the proposal that the similar allele, 1(1)ts726, is a cell-lethal mutation specifically affecting mitotically active cells.


Sign in / Sign up

Export Citation Format

Share Document