scholarly journals Two Persistent LINE-1 Lineages in Peromyscus Have Unequal Rates of Evolution

Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1289-1298
Author(s):  
N Carol Casavant ◽  
Amy N Sherman ◽  
Holly A Wichman

Abstract LINE-1, the major family of long, interspersed repeats in the mammalian genome, moves via an RNA intermediate and encodes its own reverse transcriptase. Comparative sequence analysis was used to reconstruct the phylogenetic history of LINE-1 dynamics in the deer mouse, Peromyscus. As is the case in Mus and Rattus, a very small number of active templates produce the majority of LINE-1 copies in Peromyscus. However, in contrast to the single LINE-1 lineage seen in the muroid rodents, Peromyscus has at least two LINE-1 lineages whose most recent common ancestor probably existed before the peromyscine radiation. Species-specific variants of Lineage 1, and intact open reading frames in the youngest elements of both Lineages 1 and 2, suggest that both lineages have remained active within the same genome. The higher number of shared-sequence variants in Lineage 1 relative to Lineage 2 suggests that Lineage 1 has replaced its master template much more frequently than Lineage 2 or that the reverse transcriptase Lineage 1 is more error prone. The implications of the method used to acquire LINE-1 sequences for analysis are discussed.

Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 345-357 ◽  
Author(s):  
N Carol Casavant ◽  
Rhonda N Lee ◽  
Amy N Sherman ◽  
Holly A Wichman

Abstract The large number of L1 [long interspersed elements (LINE)-1] sequences found in the genome is due to the insertion of copies of the retrotransposon over evolutionary time. The majority of copies appear to be replicates of a few active, or “master” templates. A continual replacement of master templates over time gives rise to lineages distinguishable by their own unique set of shared-sequence variants. A previous analysis of L1 sequences in deer mice, Peromyscus maniculatus and P. leucopus, revealed two active L1 lineages, marked by different rates of evolution, whose most recent common ancestor predates the expansion of the Peromyscus species. Here we exploit lineage-specific, shared-sequence variants to reveal a paucity of Lineage 2 sequences in at least one species, P. californicus. The dearth of Lineage 2 copies in P. californicus suggests that Lineage 2 may have been unproductive until after the most recent common ancestor of P. californicus and P. maniculatus. We also show that Lineage 1 appears to have a higher rate of evolution in P. maniculatus relative to either P. californicus or P. leucopus. As a phylogenetic tool, L1 lineage-specific variants support a close affinity between P. californicus and P. eremicus relative to the other species examined.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyi Dai ◽  
Shan Lu ◽  
Guobao Shang ◽  
Wentao Zhu ◽  
Jing Yang ◽  
...  

Toroviruses (ToVs) are enteric pathogens and comprise three species, equine torovirus (EToV), bovine torovirus (BToV), and porcine torovirus (PToV). In this study, a novel torovirus (antelope torovirus, AToV) was discovered from fecal samples of Tibetan antelopes (Pantholops hodgsonii) with viral loads of 2.10×109 to 1.76×1010 copies/g. The genome of AToV is 28,438 nucleotides (nt) in length encoding six open reading frames (ORFs) with 11 conserved domains in pp1ab and a putative slippery sequence (14171UUUAAAC14177) in the overlapping region of ORF1a and ORF1b. Phylogenetic analysis illustrated strains of AToV form a unique clade within ToVs and comparative analysis showed AToV share relatively low sequence identity with other ToVs in six ORFs (68.2–91.6% nucleotide identity). These data suggested that AToV represents a novel and distinct species of ToVs. Based on the M genes, evolutionary analysis with BEAST of AToV and other ToVs led to a most recent common ancestor estimate of 366years ago. Remarkably, recombination analysis revealed AToV was the unknown parental ToV that once involving in the recombinant events of HE genes of two Dutch strains of BToV (B150 and B155), which indicated that AToV occurred cross-species transmission and existed both in the Netherlands and China. This study revealed a novel torovirus, a natural reservoir host (Tibetan antelope) of toroviruses for the first time, and appealed to further related studies to better understand the diversity of toroviruses.


2019 ◽  
Vol 100 (10) ◽  
pp. 1457-1468 ◽  
Author(s):  
Mohammad Hajizadeh ◽  
Adrian J. Gibbs ◽  
Fahimeh Amirnia ◽  
Miroslav Glasa

The 206 complete genomic sequences of Plum pox virus in GenBank (January 2019) were downloaded. Their main open reading frames (ORF)s were compared by phylogenetic and population genetic methods. All fell into the nine previously recognized strain clusters; the PPV-Rec and PPV-T strain ORFs were all recombinants, whereas most of those in the PPV-C, PPV-CR, PPV-CV, PPV-D, PPV-EA, PPV-M and PPV-W strain clusters were not. The strain clusters ranged in size from 2 (PPV-CV and PPV-EA) to 74 (PPV-D). The isolates of eight of the nine strains came solely from Europe and the Levant (with an exception resulting from a quarantine breach), but many PPV-D strain isolates also came from east and south Asia and the Americas. The estimated time to the most recent common ancestor (TMRCA) of all 134 non-recombinant ORFs was 820 (865–775) BCE. Most strain populations were only a few decades old, and had small intra-strain, but large inter-strain, differences; strain PPV-W was the oldest. Eurasia is clearly the ‘centre of emergence’ of PPV and the several PPV-D strain populations found elsewhere only show evidence of gene flow with Europe, so have come from separate introductions from Europe. All ORFs and their individual genes show evidence of strong negative selection, except the positively selected pipo gene of the recently migrant populations. The possible ancient origins of PPV are discussed.


Author(s):  
Claudia Ortiz-Sepulveda ◽  
Mathieu Genete ◽  
Christelle Blassiau ◽  
Cécile Godé ◽  
Christian Albrecht ◽  
...  

Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced a substantial dataset. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites), although some branches lack support in the latter case. Variant calling on the exome of Coelaturini from the Malawi Basin produced ~2,000 SNPs per population pair. Nucleotide diversity and population differentiation was low compared to previous estimates in mollusks, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming non-specific sequence data obtained for Coelaturini of the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays an identical gene order to that of the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for the development of integrative genomic studies on micro- and macroevolutionary dynamics in non-model organisms.


1992 ◽  
Vol 6 ◽  
pp. 100-100
Author(s):  
John J. Flynn

Calculations of “rates of evolution” have been applied to a variety of indicators of change within populations, species, or higher taxa. This has led to confusion about taxonomic and temporal scaling, particularly when rates are calculated for supposedly “equivalent” taxonomic ranks, or “higher-level” taxa that are not monophyletic groups. All calculations of rates of evolutionary change require accurate temporal calibration. Even in studies of molecular evolution that assume a “molecular clock”, the rate at which any clock ticks must be calibrated empirically by fossil data on the age of divergence of some taxa.Molecular clock rates for all Mammalia generally have been calculated from the primate fossil record and phylogeny. However, rates of molecular evolution have been shown to vary both within and among different clades. Given a preference for a more rigorous system in which molecular divergence is not assumed to occur at a constant rate, the time of divergence should be determined directly for all clades in studies of molecular “rates of evolution”.The mammalian order Carnivora is a monophyletic group widely cited in studies of evolutionary tempo, and mode. However, few of those rate studies have considered explicitly the roles of fossil taxa and rigorously tested phylogenies. For example, phylogenetic placement of early Cenozoic Carnivora (generally placed in the paraphyletic “stem-group” “Miacoidea”), relative to the two major clades of living Carnivora (Caniformia and Feliformia), profoundly influences estimates of the age of cladogenetic divergence for clades of living carnivorans. If all the taxa placed within the “Miacoidea” lie outside a restricted clade of Carnivora (defined as the most recent common ancestor of extant Carnivora, and all of its descendants), then the oldest Carnivora (“neocarnivorans”) are late Eocene (about 35–40 Ma). However, if miacid “miacoids” are caniforms and viverravid “miacoids” are feliforms, then the Caniformia/Feliformia (=Carnivora) clade is at least as old as the oldest “miacoid” (middle Paleocene, or >60 Ma). The implications for calculations of rates of evolution within Carnivora are obvious. Similarly, many fossil Carnivora taxa have been assigned to living families, although the phylogenetic relationships of both fossil and living taxa within most of these families has been poorly understood. This presentation will consider: 1) minimum estimates of clade divergence time, based on current hypotheses of carnivoran phylogeny (emphasizing placement of fossil taxa) and oldest occurrence of fossils within a clade or its sister group- traditional taxonomies both underestimate (e.g. Caniformia/Feliformia) and overestimate (e.g. some living families, such as Viverridae) clade divergence times; and 2) calculation of rates of evolution within Carnivora, focusing on taxonomic diversification and molecular divergence, comparison of rates calculated using traditional taxonomies and artificial “higher-taxa” categories versus those using phylogenetic clades (“unranked”), and the effects of fossil taxa.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1187-1198 ◽  
Author(s):  
Mikkel H Schierup ◽  
Xavier Vekemans ◽  
Freddy B Christiansen

Abstract Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.


Author(s):  
Wenjun Cheng ◽  
Tianjiao Ji ◽  
Shuaifeng Zhou ◽  
Yong Shi ◽  
Lili Jiang ◽  
...  

AbstractEchovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.


Author(s):  
Ya-Fang Hu ◽  
Li-Ping Jia ◽  
Fang-Yuan Yu ◽  
Li-Ying Liu ◽  
Qin-Wei Song ◽  
...  

Abstract Background Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot and mouth disease (HFMD). This study aimed to investigate the molecular epidemiology and evolutionary characteristics of CVA16. Methods Throat swabs were collected from children with HFMD and suspected HFMD during 2010–2019. Enteroviruses (EVs) were detected and typed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and RT-PCR. The genotype, evolutionary rate, the most recent common ancestor, population dynamics and selection pressure of CVA16 were analyzed based on viral protein gene (VP1) by bioinformatics software. Results A total of 4709 throat swabs were screened. EVs were detected in 3180 samples and 814 were CVA16 positive. More than 81% of CVA16-positive children were under 5 years old. The prevalence of CVA16 showed obvious periodic fluctuations with a high level during 2010–2012 followed by an apparent decline during 2013–2017. However, the activities of CVA16 increased gradually during 2018–2019. All the Beijing CVA16 strains belonged to sub-genotype B1, and B1b was the dominant strain. One B1c strain was detected in Beijing for the first time in 2016. The estimated mean evolutionary rate of VP1 gene was 4.49 × 10–3 substitution/site/year. Methionine gradually fixed at site-23 of VP1 since 2012. Two sites were detected under episodic positive selection, one of which (site-223) located in neutralizing linear epitope PEP71. Conclusions The dominant strains of CVA16 belonged to clade B1b and evolved in a fast evolutionary rate during 2010–2019 in Beijing. To provide more favorable data for HFMD prevention and control, it is necessary to keep attention on molecular epidemiological and evolutionary characteristics of CVA16.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1217-1228 ◽  
Author(s):  
Carsten Wiuf ◽  
Jotun Hein

Abstract In this article we discuss the ancestry of sequences sampled from the coalescent with recombination with constant population size 2N. We have studied a number of variables based on simulations of sample histories, and some analytical results are derived. Consider the leftmost nucleotide in the sequences. We show that the number of nucleotides sharing a most recent common ancestor (MRCA) with the leftmost nucleotide is ≈log(1 + 4N Lr)/4Nr when two sequences are compared, where L denotes sequence length in nucleotides, and r the recombination rate between any two neighboring nucleotides per generation. For larger samples, the number of nucleotides sharing MRCA with the leftmost nucleotide decreases and becomes almost independent of 4N Lr. Further, we show that a segment of the sequences sharing a MRCA consists in mean of 3/8Nr nucleotides, when two sequences are compared, and that this decreases toward 1/4Nr nucleotides when the whole population is sampled. A measure of the correlation between the genealogies of two nucleotides on two sequences is introduced. We show analytically that even when the nucleotides are separated by a large genetic distance, but share MRCA, the genealogies will show only little correlation. This is surprising, because the time until the two nucleotides shared MRCA is reciprocal to the genetic distance. Using simulations, the mean time until all positions in the sample have found a MRCA increases logarithmically with increasing sequence length and is considerably lower than a theoretically predicted upper bound. On the basis of simulations, it turns out that important properties of the coalescent with recombinations of the whole population are reflected in the properties of a sample of low size.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 482
Author(s):  
Alice Michie ◽  
John S. Mackenzie ◽  
David W. Smith ◽  
Allison Imrie

Ross River virus (RRV) is the most medically significant mosquito-borne virus of Australia, in terms of human morbidity. RRV cases, characterised by febrile illness and potentially persistent arthralgia, have been reported from all Australian states and territories. RRV was the cause of a large-scale epidemic of multiple Pacific Island countries and territories (PICTs) from 1979 to 1980, involving at least 50,000 cases. Historical evidence of RRV seropositivity beyond Australia, in populations of Papua New Guinea (PNG), Indonesia and the Solomon Islands, has been documented. We describe the genomic characterisation and timescale analysis of the first isolate of RRV to be sampled from PNG to date. Our analysis indicates that RRV has evolved locally within PNG, independent of Australian lineages, over an approximate 40 year period. The mean time to most recent common ancestor (tMRCA) of the unique PNG clade coincides with the initiation of the PICTs epidemic in mid-1979. This may indicate that an ancestral variant of the PNG clade was seeded into the region during the epidemic, a period of high RRV transmission. Further epidemiological and molecular-based surveillance is required in PNG to better understand the molecular epidemiology of RRV in the general Australasian region.


Sign in / Sign up

Export Citation Format

Share Document