scholarly journals A Genetic Screen for Novel Components of the Notch Signaling Pathway During Drosophila Bristle Development

Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Masahiro J Go ◽  
Spyros Artavanis-Tsakonas

Abstract The Notch receptor is the central element in a cell signaling mechanism controlling a broad spectrum of cell fate choices. Genetic modifier screens in Drosophila and subsequent molecular studies have identified several Notch pathway components, but the biochemical nature of signaling is still elusive. Here, we report the results of a genetic modifier screen of the bristle phenotype of a gain-of-function Notch allele, Abruptex16. Abruptex mutations interfere with lateral inhibition/specification events that control the segregation of epidermal and sensory organ precursor lineages, thus inhibiting bristle formation. Mutations that reduce Notch signaling suppress this phenotype. This screen of approximately 50,000 flies led to the identification of a small number of dominant suppressors in seven complementation groups. These include known components in the pathway, Notch, mastermind, Delta, and Hairless, as well as two novel mutations. The first, A122, appears to interact with Notch only during bristle development. The other, M285, displays extensive genetic interactions with the Notch pathway elements and appears, in general, capable of suppressing Notch gain-of-function phenotypes while enhancing Notch loss-of-function phenotypes, suggesting that it plays an important role in Notch signaling.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4161-4161
Author(s):  
Caroline Erter Burns ◽  
Leonard I. Zon

Abstract Vertebrate hematopoiesis can be divided into two embryonic phases: a short primitive wave predominantly generating erythrocytes and a definitive (fetal/adult) wave producing long-term hematopoietic stem cells (HSCs). The definitive wave occurs in the embryonic aorta-gonad-mesonephros (AGM) region through the asymmetric induction of HSCs from the ventral, but not dorsal, aortic endothelial wall. Since Notch signaling is critical for orchestrating a variety of developmental cell fate choices from invertebrates to humans and has been implicated in affecting the differentiation of some hematopoietic lineages, we analyzed whether the Notch pathway regulates definitive HSC induction in vivo. The zebrafish mutant mindbomb harbors a mutation in an essential E3 ligase that ubiquitylates Delta, which in turn allows the Notch intercellular domain to be released and activate downstream target gene transcription. Thus, in the absence of Mindbomb function Notch signaling does not occur. We found that although mindbomb mutants show normal primitive hematopoiesis, definitive c-myb and runx1 HSC expression is lacking. Since embryos injected with synthetic morpholinos designed to inhibit proper splicing of runx1 RNA ( runx morphants) show the same hematopoietic phenotype as mindbomb mutants, we next addressed the epistatic relationship between notch and runx1 using classic gain-of-function and loss-of-function analyses. In runx1 morphants expression of a notch receptor, notch3, and a delta ligand, deltaC, in the developing dorsal aorta was normal. Moreover, injection of runx1 RNA rescued HSCs in the AGM of mindbomb mutants. Together, these results suggest that Runx1 functions downstream of Notch in promoting HSC fate. We next analyzed whether a constitutively activated form of Notch (NICD) is sufficient for HSC specification in the AGM using an inducible binary transgenic system. Zebrafish carrying the heat-shock promoter driving the activator gal4 were mated to animals carrying 6 gal4 -responsive tandem upstream activating sequences (UAS) driving NICD. At the 10 somite-stage the embryos were heat-shocked at 37°C for 1 hour to activate NICD throughout the double transgenic animals. Surprisingly, expression of both HSC markers, c-myb and runx1, were expanded from their normal restricted domain in the ventral endothelium to the entire circumference of the dorsal aorta. Most interestingly, the presence of ectopic c-myb and runx1 transcripts were observed in the developing post-cardinal vein, a vessel that normally does not produce HSCs. These data imply that activation of the Notch pathway generates increased numbers of HSCs in vivo. When runx1 RNA is injected into wild-type embryos a similar expansion of c-myb transcripts is seen throughout the entire dorsal aorta and post-cardinal vein, further indicating that Runx1 functions downstream of Notch in HSC induction. In summary, discovery of the molecular programs essential and sufficient for fetal/adult hematopoietic ontogeny will lead to a further understanding of the physiologic and pathologic processes regulating stem cell homeostasis and translate into more effective therapies for blood disorders.


Genetics ◽  
1999 ◽  
Vol 152 (2) ◽  
pp. 567-576 ◽  
Author(s):  
M Cornell ◽  
D A P Evans ◽  
R Mann ◽  
M Fostier ◽  
M Flasza ◽  
...  

Abstract During development, the Notch receptor regulates many cell fate decisions by a signaling pathway that has been conserved during evolution. One positive regulator of Notch is Deltex, a cytoplasmic, zinc finger domain protein, which binds to the intracellular domain of Notch. Phenotypes resulting from mutations in deltex resemble loss-of-function Notch phenotypes and are suppressed by the mutation Suppressor of deltex [Su(dx)]. Homozygous Su(dx) mutations result in wing-vein phenotypes and interact genetically with Notch pathway genes. We have previously defined Su(dx) genetically as a negative regulator of Notch signaling. Here we present the molecular identification of the Su(dx) gene product. Su(dx) belongs to a family of E3 ubiquitin ligase proteins containing membrane-targeting C2 domains and WW domains that mediate protein-protein interactions through recognition of proline-rich peptide sequences. We have identified a seven-codon deletion in a Su(dx) mutant allele and we show that expression of Su(dx) cDNA rescues Su(dx) mutant phenotypes. Overexpression of Su(dx) also results in ectopic vein differentiation, wing margin loss, and wing growth phenotypes and enhances the phenotypes of loss-of-function mutations in Notch, evidence that supports the conclusion that Su(dx) has a role in the downregulation of Notch signaling.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jingxia Xu ◽  
Thomas Gridley

The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism that is required for embryonic development, cell fate specification, and stem cell maintenance. Discovered and studied initially in Drosophila melanogaster, the Notch pathway is conserved and functionally active throughout the animal kingdom. In this paper, we summarize the biochemical mechanisms of Notch signaling and describe its role in regulating one particular developmental pathway, oogenesis in Drosophila.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009687
Author(s):  
Ramya Singh ◽  
Ryan B. Smit ◽  
Xin Wang ◽  
Chris Wang ◽  
Hilary Racher ◽  
...  

Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline.


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4265-4273 ◽  
Author(s):  
K. Matsuno ◽  
M.J. Go ◽  
X. Sun ◽  
D.S. Eastman ◽  
S. Artavanis-Tsakonas

The Notch (N) pathway defines an evolutionarily conserved cell signaling mechanism that governs cell fate choices through local cell interactions. The ankyrin repeat region of the Notch receptor is essential for signaling and has been implicated in the interactions between Notch and two intracellular elements of the pathway: Deltex (Dx) and Suppressor of Hairless (Su(H)). Here we examine directly the function of the Notch cdc10/ankyrin repeats (ANK repeats) by transgenic and biochemical analysis. We present evidence implicating the ANK repeats in the regulation of Notch signaling through homotypic interactions. In vivo expression of the Notch ANK repeats reveals a cell non-autonomous effect and elicits mutant phenotypes that indicate the existence of novel downstream events in Notch signaling. These signaling activities are independent of the known effector Su(H) and suggest the existence of yet unidentified Notch pathway components.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 521
Author(s):  
Catia Giovannini ◽  
Francesca Fornari ◽  
Fabio Piscaglia ◽  
Laura Gramantieri

The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1879 ◽  
Author(s):  
Christian T. Meisel ◽  
Cristina Porcheri ◽  
Thimios A. Mitsiadis

The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.


1998 ◽  
Vol 18 (12) ◽  
pp. 7423-7431 ◽  
Author(s):  
Sophie Jarriault ◽  
Odile Le Bail ◽  
Estelle Hirsinger ◽  
Olivier Pourquié ◽  
Frédérique Logeat ◽  
...  

ABSTRACT The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown inDrosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Splitgenes. Genetic evidence has also implicated the kuzbaniangene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 aHES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-inducedHES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenousHES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do.


2013 ◽  
Vol 210 (2) ◽  
pp. 301-319 ◽  
Author(s):  
Camille Lobry ◽  
Panagiotis Ntziachristos ◽  
Delphine Ndiaye-Lobry ◽  
Philmo Oh ◽  
Luisa Cimmino ◽  
...  

Notch signaling pathway activation is known to contribute to the pathogenesis of a spectrum of human malignancies, including T cell leukemia. However, recent studies have implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and several solid tumors. Here we report a novel tumor suppressor role for Notch signaling in acute myeloid leukemia (AML) and demonstrate that Notch pathway activation could represent a therapeutic strategy in this disease. We show that Notch signaling is silenced in human AML samples, as well as in AML-initiating cells in an animal model of the disease. In vivo activation of Notch signaling using genetic Notch gain of function models or in vitro using synthetic Notch ligand induces rapid cell cycle arrest, differentiation, and apoptosis of AML-initiating cells. Moreover, we demonstrate that Notch inactivation cooperates in vivo with loss of the myeloid tumor suppressor Tet2 to induce AML-like disease. These data demonstrate a novel tumor suppressor role for Notch signaling in AML and elucidate the potential therapeutic use of Notch receptor agonists in the treatment of this devastating leukemia.


2006 ◽  
Vol 26 (13) ◽  
pp. 4769-4774 ◽  
Author(s):  
Céline Souilhol ◽  
Sarah Cormier ◽  
Kenji Tanigaki ◽  
Charles Babinet ◽  
Michel Cohen-Tannoudji

ABSTRACT The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.


Sign in / Sign up

Export Citation Format

Share Document