Ethylnitrosourea-Induced Mutation in Mice Leads to the Expression of a Novel Protein in the Eye and to Dominant Cataracts

Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1313-1320 ◽  
Author(s):  
Jochen Graw ◽  
Norman Klopp ◽  
Jana Löster ◽  
Dian Soewarto ◽  
Helmut Fuchs ◽  
...  

Abstract A novel ENU-induced mutation in the mouse leading to a nuclear and zonular opacity of the eye lens (Aey1) was mapped to chromosome 1 between the markers D1Mit303 and D1Mit332. On the basis of the chromosomal position, the γ-crystallin encoding gene cluster (Cryg) and the βA2-crystallin encoding gene Cryba2 were tested as candidate genes. An A → T mutation destroys the start codon of the Cryge gene in the mutants; this mutation was confirmed by the absence of a restriction site for NcoI in the corresponding genomic fragment of homozygous mutants. The next in-frame start codon is 129 bp downstream; this predicted truncated γE-crystallin consists of 131 amino acids, resulting in a molecular mass of 14 kD. However, another open reading frame was observed just 19 bp downstream of the regular Cryge start codon, resulting in a protein of 119 amino acids and a calculated molecular weight of 13 kD. Western blot analysis using polyclonal antibodies against γ-crystallins or the novel Aey1-specific protein demonstrated the specific expression of the Aey1 protein in the cataractous lenses only; the truncated form of the γE-crystallin could not be detected. Therefore, it is concluded that the novel protein destroys the sensitive cellular structure of the eye lens.

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1633-1640
Author(s):  
Jochen Graw ◽  
Angelika Neuhäuser-Klaus ◽  
Jana Löster ◽  
Norman Klopp ◽  
Jack Favor

Abstract A novel ENU-induced mutation in the mouse leading to a nuclear and cortical opacity of the eye lens (ENU418) was mapped to proximal chromosome 1 by a genome-wide mapping approach. It suggests that the cluster of γ-crystallin encoding genes (Cryg) and the βA2-crystallin encoding gene Cryba2 are excellent candidate genes. An A → G exchange in the middle of intron 1 of the Cryge gene was found as the only alteration cosegregating with the cataractous phenotype. The mutation was confirmed by the presence of a novel restriction site for ApaI in the corresponding genomic DNA fragment. The mutation represses splicing of intron 1; the additional 92 bp in the corresponding cDNA leads to a frameshift and the expression of a novel hybrid protein containing 3 amino acids of the γE-crystallin at the N terminus, but 153 novel amino acids. The CrygeENU418 protein has a calculated molecular mass of ∼15.6 kD and an alkaline isoelectric point (pH 10.1) and is predicted to have two hydrophobic domains. Western blot analysis using a polyclonal antibody against the hydrophilic C-terminal part of the CrygeENU418-specific protein demonstrated its stable expression in the cataractous lenses; it was not found in the wild types. Histological analysis of the cataractous lenses indicated that the expression of the new protein disrupts the cellular structure of the eye lens.


2004 ◽  
Vol 123 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Albrecht Stenzinger ◽  
Tobias Kajosch ◽  
Claudia Tag ◽  
Alexandra Porsche ◽  
Inka Welte ◽  
...  

FEBS Letters ◽  
2004 ◽  
Vol 575 (1-3) ◽  
pp. 64-70 ◽  
Author(s):  
Shinji Hadano ◽  
Asako Otomo ◽  
Kyoko Suzuki-Utsunomiya ◽  
Ryota Kunita ◽  
Yoshiko Yanagisawa ◽  
...  

2011 ◽  
Vol 89 (2) ◽  
pp. 224-235 ◽  
Author(s):  
Andrew K. Stewart ◽  
Fouad T. Chebib ◽  
Syed W. Akbar ◽  
Maria J. Salas ◽  
Rajan A. Sonik ◽  
...  

The AE1 mutation G701D, associated with recessive distal renal tubular acidosis (dRTA), produces only minimal erythroid phenotype, reflecting erythroid-specific expression of stimulatory AE1 subunit glycophorin A (GPA). GPA transgene expression could theoretically treat recessive dRTA in patients and in mice expressing cognate Ae1 mutation G719D. However, human (h) GPA and mouse (m) Gpa amino acid sequences are widely divergent, and mGpa function in vitro has not been investigated. We therefore studied in Xenopus oocytes the effects of coexpressed mGpa and hGPA on anion transport by erythroid (e) and kidney (k) isoforms of wild-type mAe1 (meAe1, mkAe1) and of mAe1 mutant G719D. Coexpression of hGPA or mGpa enhanced the function of meAe1 and mkAe1 and rescued the nonfunctional meAe1 and mkAe1 G719D mutants through increased surface expression. Progressive N-terminal truncation studies revealed a role for meAe1 amino acids 22–28 in GPA-responsiveness of meAe1 G719D. MouseN-cyto/humanTMD and humanN-cyto/mouseTMD kAE1 chimeras were active and GPA-responsive. In contrast, whereas chimera mkAe1N-cyto/hkAE1 G701DTMD was GPA-responsive, chimera hkAE1N-cyto/mkAe1 G719DTMD was GPA-insensitive. Moreover, whereas the isolated transmembrane domain (TMD) of hAE1 G701D was GPA-responsive, that of mAe1 G719D was GPA-insensitive. Thus, mGpa increases surface expression and activity of meAe1 and mkAe1. However, the G719D mutation renders certain mAe1 mutant constructs GPA-unresponsive and highlights a role for erythroid-specific meAe1 amino acids 22–28 in GPA-responsiveness.


2008 ◽  
Vol 28 (15) ◽  
pp. 4719-4733 ◽  
Author(s):  
Carole A. Farah ◽  
Ikue Nagakura ◽  
Daniel Weatherill ◽  
Xiaotang Fan ◽  
Wayne S. Sossin

ABSTRACT In Aplysia californica, the serotonin-mediated translocation of protein kinase C (PKC) Apl II to neuronal membranes is important for synaptic plasticity. The orthologue of PKC Apl II, PKCε, has been reported to require phosphatidic acid (PA) in conjunction with diacylglycerol (DAG) for translocation. We find that PKC Apl II can be synergistically translocated to membranes by the combination of DAG and PA. We identify a mutation in the C1b domain (arginine 273 to histidine; PKC Apl II-R273H) that removes the effects of exogenous PA. In Aplysia neurons, the inhibition of endogenous PA production by 1-butanol inhibited the physiological translocation of PKC Apl II by serotonin in the cell body and at the synapse but not the translocation of PKC Apl II-R273H. The translocation of PKC Apl II-R273H in the absence of PA was explained by two additional effects of this mutation: (i) the mutation removed C2 domain-mediated inhibition, and (ii) the mutation decreased the concentration of DAG required for PKC Apl II translocation. We present a model in which, under physiological conditions, PA is important to activate the novel PKC Apl II both by synergizing with DAG and removing C2 domain-mediated inhibition.


2000 ◽  
Vol 63 (2) ◽  
pp. 469-481 ◽  
Author(s):  
V. Anne Westbrook ◽  
Alan B. Diekman ◽  
Ken L. Klotz ◽  
Vrinda V. Khole ◽  
Chris von Kap-Herr ◽  
...  

Keruen ◽  
2020 ◽  
Vol 3 (68) ◽  
Author(s):  
A.T. Oisylbay ◽  

The article discusses the artistic foundations of the national code in the novel "Adil-Maria" by Shakarim Kudaiberdiev, social and spiritual atmosphere of the beginning of the XX century, as well as the specific expression of psychological characteristics of the characters. The article includes the scientific analysis of the “national spirit”, “national code”, the theme of the novel, the style and artistic language of the writer.


2002 ◽  
Vol 13 (4) ◽  
pp. 875-886 ◽  
Author(s):  
Yumiko Kiuchi-Saishin ◽  
Shimpei Gotoh ◽  
Mikio Furuse ◽  
Akiko Takasuga ◽  
Yasuo Tano ◽  
...  

ABSTRACT. As the first step in understanding the physiologic functions of claudins (tight junction integral membrane proteins) in nephrons, the expression of claudin-1 to -16 in mouse kidneys was examined by Northern blotting. Among these claudins, only claudin-6, -9, -13, and -14 were not detectable. Claudin-5 and -15 were detected only in endothelial cells. Polyclonal antibodies specific for claudin-7 and -12 were not available. Therefore, the distributions of claudin-1, -2, -3, -4, -8, -10, -11, and -16 in nephron segments were examined with immunofluorescence microscopy. For identification of individual segments, antibodies specific for segment markers were used. Immunofluorescence microscopic analyses of serial frozen sections of mouse kidneys with polyclonal antibodies for claudins and segment markers revealed that claudins demonstrated very complicated, segment-specific, expression patterns in nephrons, i.e., claudin-1 and -2 in Bowman’s capsule, claudin-2, -10, and -11 in the proximal tubule, claudin-2 in the thin descending limb of Henle, claudin-3, -4, and -8 in the thin ascending limb of Henle, claudin-3, -10, -11, and -16 in the thick ascending limb of Henle, claudin-3 and -8 in the distal tubule, and claudin-3, -4, and -8 in the collecting duct. These segment-specific expression patterns of claudins are discussed, with special reference to the physiologic functions of tight junctions in nephrons.


2019 ◽  
Vol 21 (1) ◽  
pp. 85
Author(s):  
Yousef Ashraf Tawfik Morcos ◽  
Gregoire Najjar ◽  
Sabine Meessen ◽  
Britta Witt ◽  
Anca Azoitei ◽  
...  

In this study, we describe the identification of a novel splice variant of TERF1/PIN2, one of the main components of the telomeric shelterin complex. This new splice variant is identical to TERF1, apart from a 30 amino acid internal insertion near to the C-terminus of TERF1. Based on genome comparison analyses and RNA expression data, we show that this splice variant is conserved among hominidae but absent from all other species. RNA expression and histological analyses show specific expression in human spermatogonial and hematopoietic stem cells (HSCs), while all other analyzed tissues lack the expression of this TERF1-isoform, hence the name TERF1-tsi (TERF1-tissue-specific-isoform). In addition, we could not detect any expression in primary human cells and established cancer cell lines. Immunohistochemistry results involving two new rabbit polyclonal antibodies, generated against TERF1-tsi specific peptides, indicate nuclear localization of TERF1-tsi in a subset of spermatogonial stem cells. In line with this observation, immunofluorescence analyzes in various cell lines consistently revealed that ectopic TERF1-tsi localizes to the cell nucleus, mainly but not exclusively at telomeres. In a first attempt to evaluate the impact of TERF1-tsi in the testis, we have tested its expression in normal testis samples versus matched tumor samples from the same patients. Both RT-PCR and IHC show a specific downregulation of TERF1-tsi in tumor samples while the expression of TERF1 and PIN2 remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document