Role of the Unfolded Protein Response Pathway in Regulation of INO1 and in the sec14 Bypass Mechanism in Saccharomyces cerevisiae

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Hak J Chang ◽  
Elizabeth W Jones ◽  
Susan A Henry

Abstract INO1, encoding inositol 1-phosphate synthase, is the most highly regulated of a class of genes containing the repeated element, UASINO, in their promoters. Transcription of UASINO-containing genes is modulated by the availability of exogenous inositol and by signals generated by alteration of phospholipid metabolism. The unfolded protein response (UPR) pathway also is involved in INO1 expression and the ire1Δ and hac1Δ mutants are inositol auxotrophs. We examined the role of the UPR in transmitting a signal generated in response to inositol deprivation and to alteration of phospholipid biosynthesis created in the sec14ts cki1Δ genetic background. We report that the UPR is required for sustained high-level INO1 expression in wild-type strains, but not for transient derepression in response to inositol deprivation. Moreover, the UPR is not required for expression or regulation of INO1 in response to the change in lipid metabolism that occurs in the sec14ts cki1Δ genetic background. Thus, the UPR signal transduction pathway is not involved directly in transcriptional regulation of INO1 and other UASINO-containing genes. However, we discovered that inactivation of Sec14p leads to activation of the UPR, and that sec14 cki1 strains exhibit defective vacuolar morphology, suggesting that the mechanism by which the cki1Δ mutation suppresses the growth and secretory defect of sec14 does not fully restore wild-type morphology. Finally, synthetic lethality involving sec14 and UPR mutations suggests that the UPR plays an essential role in survival of sec14 cki1 strains.

2021 ◽  
Vol 22 (5) ◽  
pp. 2567
Author(s):  
Yann S. Gallot ◽  
Kyle R. Bohnert

Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.


1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3782-3782
Author(s):  
Jie Bai ◽  
Sho Kubota ◽  
Takako Yokomizo ◽  
Akinori Kanai ◽  
Yuqi Sun ◽  
...  

High Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in a subset of patients with myelodysplastic syndrome (MDS). The high level of HMGA2 expression appears to predict poor prognosis in various tumors; however, it remains unclear how HMGA2 dysregulates expression of target genes to facilitate the transformation. To elucidate the mechanisms by which the overexpression of Hmga2 promotes the development of MDS, we generated an Hmga2-expressing Tet2-deficient (Hmga2-Tet2Δ/Δ) mouse model showing the progressive phenotype of MDS. We found that Hmga2-Tet2Δ/Δ mice had neutropenia and anemia, but variable platelet counts, accompanied by elevated frequencies of mutant cells in myeloid cells. Hmga2-Tet2Δ/Δ mice showed a similar median survival to Tet2Δ/Δ mice (274 days vs 290 days), but shorter survival than Hmga2-Tet2wt/wt mice (274 days vs undetermined). Moribund Hmga2-Tet2Δ/Δ mice showed progressive leukopenia and anemia, accompanied by the emergence of dysplastic neutrophils, myeloblasts and anisocytosis in the PB and BM and dysplastic megakaryocytes in the BM. Hmga2-Tet2Δ/Δ mice had mildly increased spleen weights, and expanded myeloid cells and HSPCs in the spleen without the deposition of fibrosis. During a 12-month observation, we found that Hmga2-Tet2Δ/Δ mice developed lethal MDS/MPN overlap disease (47%), MDS (33%), MPN (13%), and AML (7%), while 6 out of 11 Tet2Δ/Δ mice developed MPN (55%). Hmga2-Tet2wt/wt mice subsequently showed similar blood counts in PB and died without the expansion of leukemic or dysplastic blood cells. Therefore, Hmga2 overexpression did not transform wild-type HSCs but promoted the development of MDS in the absence of Tet2 in vivo. In order to elucidate the molecular mechanisms underlying the transformation of Hmga2-Tet2Δ/Δ cells, we initially performed gene expression profiling by a RNA sequencing analysis in LSK HSPCs isolated from WT, Hmga2-Tet2wt/wt, Tet2Δ/Δ, and Hmga2-Tet2Δ/Δ mice at a pre-disease stage and those isolated from two Hmga2-Tet2Δ/Δ MDS/MPN and AML mice. Hmga2-Tet2Δ/Δ leukemic cells were placed closer to one out of two Hmga2-Tet2Δ/Δ cells at the pre-disease stage, but clearly apart from the other genotype cells, indicating that Hmga2 overexpression and Tet2 loss result in the accumulation of alterations in the transcriptional program during the development of MDS.In order to clarify the mechanisms by which the overexpression of Hmga2 alters the transcriptional program in Tet2-deficient cells, we performed the ChIP-sequencing of FLAG-tagged Hmga2 in bone marrow progenitor cells isolated from WT, Hmga2-Tet2wt/wt, and Hmga2-Tet2Δ/Δ mice. The numbers of Hmga2-binding peaks were markedly lower in Tet2-deficient cells than in Hmga2-Tet2wt/wt cells (2227 peaks versus 11500 peaks). Furthermore, annotated genes adjacent to Hmga2-binding sites partially overlapped in both genotype cells, whereas 2965 out of 3843 genes identified in Tet2 wild-type cells lost the binding peaks of Hmga2 upon the deletion of Tet2. Based on the DNA-binding capacity of Hmga2, the loss of Tet2 remodeled the binding sites of Hmga2 via change in DNA methylation in Hmga2-binding flanking regions, which were not observed in the presence of Tet2, leading to significant enrichments in genes involved in cell-to-cell adhesion and cell morphogenesis in Hmga2-Tet2Δ/Δ cells. Furthermore, we found that the overexpression of Hmga2 and loss of Tet2 resulted in the activation of oncogenic pathways (e.g. TGF-b, TNF-a), but suppressed the expression of genes in the unfolded protein response. Notably, the inhibition of bile acid metabolism to reactivate the unfolded protein response markedly attenuated the proliferation of Hmga2-Tet2Δ/Δ cells. These combinatory effects on the transcriptional program and cellular functions were not redundant to those in either single mutant cell, supporting Hmga2 being a proto-oncogene because its overexpression alone was not sufficient to develop MDS in vivo. Thus, Hmga2 overexpression exerts synergistic, but also gain-of-function effects with the loss of Tet2 to target these key biological pathways and promotes the transformation of Tet2-deficient stem cells. This study also provides a new rationale for targeting the unfolded protein response in MDS cells expressing HMGA2. Disclosures No relevant conflicts of interest to declare.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Veronika J. M. Breitkopf ◽  
Gerhard Dobler ◽  
Peter Claus ◽  
Hassan Y. Naim ◽  
Imke Steffen

Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.


1999 ◽  
Vol 10 (12) ◽  
pp. 4059-4073 ◽  
Author(s):  
Maddalena de Virgilio ◽  
Claudia Kitzmüller ◽  
Eva Schwaiger ◽  
Michael Klein ◽  
Gert Kreibich ◽  
...  

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.


Sign in / Sign up

Export Citation Format

Share Document