scholarly journals EXO1 Plays a Role in Generating Type I and Type II Survivors in Budding Yeast

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1641-1649
Author(s):  
Laura Maringele ◽  
David Lydall

Abstract Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70Δ mre11Δ cells and type II survivors in tlc1Δ cells. Moreover, in tlc1Δ cells, EXO1 seems to contribute to the senescence process itself.

2008 ◽  
Vol 29 (4) ◽  
pp. 965-985 ◽  
Author(s):  
Nathalie Grandin ◽  
Michel Charbonneau

ABSTRACT In the absence of telomerase, telomeres erode, provoking accumulation of DNA damage and death by senescence. Rare survivors arise, however, due to Rad52-based amplification of telomeric sequences by homologous recombination. The present study reveals that in budding yeast cells, postsenescence survival relying on amplification of the TG1-3 telomeric repeats can take place in the absence of Rad52 when overelongated telomeres are present during senescence (hence its designation ILT, for inherited-long-telomere, pathway). By growth competition, the Rad52-independent pathway was almost as efficient as the Rad51- and Rad52-dependent pathway that predominates in telomerase-negative cells. The ILT pathway could also be triggered by increased telomerase accessibility before telomerase removal, combined with loss of telomere protection, indicating that prior accumulation of recombination proteins was not required. The ILT pathway was dependent on Rad50 and Mre11 but not on the Rad51 recombinase and Rad59, thus making it distinct from both the type II (budding yeast ALT [alternative lengthening of telomeres]) and type I pathways amplifying the TG1-3 repeats and subtelomeric sequences, respectively. The ILT pathway also required the Rad1 endonuclease and Elg1, a replication factor C (RFC)-like complex subunit, but not Rad24 or Ctf18 (two subunits of two other RFC-like complexes), the Dnl4 ligase, Yku70, or Nej1. Possible mechanisms for this Rad52-independent pathway of telomeric repeat amplification are discussed. The effects of inherited long telomeres on Rad52-dependent recombination are also reported.


2011 ◽  
Vol 10 (8) ◽  
pp. 1131-1142 ◽  
Author(s):  
Evelina Basenko ◽  
Zeki Topcu ◽  
Michael J. McEachern

ABSTRACT Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.


2020 ◽  
Vol 105 (10) ◽  
pp. e3566-e3574
Author(s):  
Wei Luo ◽  
Ting Guo ◽  
Guangyu Li ◽  
Ran Liu ◽  
Shidou Zhao ◽  
...  

Abstract Context Premature ovarian insufficiency (POI) is characterized by cessation of menstruation before 40 years of age and elevated serum level of FSH (>25 IU/L). Recent studies have found a few causative genes responsible for POI enriched in meiotic recombination and DNA damage repair pathways. Objective To investigate the role of variations in homologous recombination genes played in POI pathogenesis. Methods The whole exome sequencing was performed in 50 POI patients with primary amenorrhea. Functional characterizations of the novel variants were carried out in budding yeast and human cell line. Results We identified 8 missense variants in 7 homologous recombination genes, including EXO1, RAD51, RMI1, MSH5, MSH2, MSH6, and MLH1. The mutation p.Thr52Ser in EXO1 impaired the meiotic process of budding yeast and p.Glu68Gly in RAD51-altered protein localization in human cells, both of them impaired the efficiency of homologous recombination repair for DNA double-stranded breaks in human cells. Conclusions Our study first linked the variants of EXO1 and RAD51 with POI and further highlighted the role of DNA repair genes in ovarian dysgenesis.


2001 ◽  
Vol 21 (5) ◽  
pp. 1819-1827 ◽  
Author(s):  
Qijun Chen ◽  
Arne Ijpma ◽  
Carol W. Greider

ABSTRACT Yeast cells can survive in the absence of telomerase RNA,TLC1, by recombination-mediated telomere elongation. Two types of survivors, type I and type II, can be distinguished by their characteristic telomere patterns. RAD52 is essential for the generation of both types of survivors. Deletion of bothRAD50 and RAD51 produces a phenotype similar to that produced by deletion of RAD52. Here we examined the effects of the RAD50 and the RAD51 epistasis groups as well as the RAD52 homologue, RAD59, on the types of survivors generated in the absence of telomerase.rad59 mutations completely abolished the ability to generate type II survivors, while rad50 mutations decreased the growth viability of type II survivors but did not completely eliminate their appearance. Mutations in RAD51, RAD54, andRAD57 had the converse affect: they eliminated the ability of cells to generate type I survivors in a tlc1 strain. The triple mutant, tlc1 rad51 rad59, was not able to generate survivors. Thus either type I or type II recombination pathways can allow cells to survive in the absence of telomerase; however, elimination of both pathways in a telomerase mutant leads to the inability to elongate telomeres and ultimately cell death.


2018 ◽  
Author(s):  
Melvys Valledor ◽  
Richard S. Myers ◽  
Paul C. Schiller

ABSTRACTRecombineering has transformed functional genomic analysis. Genome modification by recombineering using the phage lambda Red SynExo homologous recombination proteins Beta inEscherichia colihas approached 100% efficiency. While highly efficient inE. coli, recombineering using the Red SynExo in other organisms declines in efficiency roughly correlating with phylogenetic distance fromE. coli. SynExo recombinases are common to double-stranded DNA viruses infecting a variety of organisms, including humans. Human Herpes virus Type 1 (HHV1) encodes a SynExo comprised of ICP8 synaptase and UL12 exonuclease. In a previous study, the Herpes SynExo was reconstitutedin vitroand shown to catalyze a model recombination reaction. Here we describe stimulation of gene targeting to edit a novel fluorescent protein gene in the human genome using ICP8 and compared its efficiency to that of a “humanized” version of Beta protein from phage λ. ICP8 significantly enhanced gene targeting rates in HEK 293 T cells while Beta was not only unable to catalyze recombineering but inhibited gene targeting using endogenous recombination functions, despite both synaptases being well-expressed and localized to the nucleus. This proof of concept encourages developing species-specific SynExo recombinases for genome engineering.SIGNIFICANCEGenome modification by recombineering using SynExo viral recombination proteins has transformed functional genomic analysis in bacteria. Single-stranded DNA (ssDNA) recombineering approaches 100% efficiency inE. coliusing Beta protein from bacteriophage lambda, but recombineering has not been extended to eukaryotic genomes. Efficient recombineering requires SynExos that co-evolved with a viral host, however SynExos are common to viruses infecting a variety of organisms, including humans. The ICP8 protein of Human Herpes virus Type 1 is a SynExo protein similar to Beta. In this pioneering study, Herpes ICP8 stimulated gene targeting in a human genome by homologous recombination while the bacterial virus Beta protein inhibited recombination in human cells. This is the first demonstration of host-specific recombineering in human cells using a human viral SynExo protein.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 786-786
Author(s):  
Jagannath Pal ◽  
Jason Wong ◽  
Puru Nanjappa ◽  
Saem Lee ◽  
Masood Shammas ◽  
...  

Abstract Abstract 786 Recombinase (RAD51) expression and homologous recombination (HR) activity are low in normal human cells including plasma cells. It is significantly induced following exposure of normal human cells to carcinogen, and is constitutively elevated in cancer cells including multiple myeloma (MM) cells. Besides its effect on genomic stability, elevated or dysregulated HR has also been implicated in telomere maintenance in tumor and immortalized cells. These cells usually lack telomerase activity and maintain telomere length by ALT mechanism (alternate lengthening of telomeres). Inhibitors of homologous recombination, therefore, have potential not only to prevent/reduce genomic instability, but also inhibit telomere maintenance, and cancer survival. We have here investigated the effect of inhibitor of HR on telomere maintenance mechanism in MM. We have evaluated effect of Nilotinib, a tyrosine kinase inhibitor and RAD51 shRNA on HR in MM. First we observed that nilotinib inhibits and RAD51 phosphorylation in MM. Nilotinib at both 5 and 10 mM concentration also led to dose-dependent inhibition of recombinase expression in MM cells. Importantly, Nilotinib also inhibited HR activity in MM cells as well as other cancer cell lines, as measured by a plasmid based assay in which leuciferase activity is generated following homologous recombination. We next evaluated effect of nilotinib on telomere maintenance alone as well as in combination with agents inhibiting telomere maintenance. The MM cells were treated for 48 hrs, either with nilotinib, telomerase inhibitor, or both nilotinib and telomerase inhibitor and evaluated for telomerase activity as well as effect on telomere length. As expected, the treatment of myeloma cells with telomerase inhibitor at 1 mM led to 88% inhibition of telomerase activity relative to control cells. Nilotinib, either alone or in the presence of telomerase inhibitor, did not have any major effect on telomerase activity in these cells. The cells were cultured in the presence of these agents for 2 weeks and evaluated for telomere length, using telomere specific real time PCR. Cells in presence of Telomerase inhibitor at 1 mM in fact had slightly increased telomere length (9%), probably due to presence or activation of ALT mechanism, following loss of telomerase activity. Importantly, nilotinib alone at 10 mM led to 20% reduction in telomere length and when combined with telomerease inhibitor at 1 mM concentrations led to reduction in the telomere length in MM cells by 52%. Moreover we have observed that transduction of MM cells with shRNA targeting RAD51 combined with telomerase inhibitor induced greater and quicker MM cell kill compared to either of these treatments alone. These data indicate that elevated HR pathway contributes to telomere maintenance in MM and combining inhibitors of HR with telomerase would expedite telomere shortening and cell death providing more effective therapeutic strategy. Disclosures: Munshi: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees.


1982 ◽  
Vol 170 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Z.-X. Zhang ◽  
E. De Clercq ◽  
H. Heremans ◽  
M. Verhaegen-Lewalle ◽  
J. Content
Keyword(s):  
Type I ◽  

2002 ◽  
Vol 22 (16) ◽  
pp. 5679-5687 ◽  
Author(s):  
Yun-Luen Tsai ◽  
Shun-Fu Tseng ◽  
Shih-Husan Chang ◽  
Chuan-Chuan Lin ◽  
Shu-Chun Teng

ABSTRACT Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of the reverse transcriptase telomerase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Genetic studies have led to the identification of DNA polymerases, cell cycle checkpoint proteins, and telomere binding proteins involved in the telomerase pathway. However, how these proteins affect telomere-telomere recombination has not been identified to date. Using an assay to trace the in vivo recombinational products throughout the course of survivor development, we show here that three major replicative polymerases, α, δ, and ε, play roles in telomere-telomere recombination and that each causes different effects and phenotypes when they as well as the telomerase are defective. Polymerase δ appears to be the main activity for telomere extension, since neither type I nor type II survivors arising via telomere-telomere recombination were seen in its absence. The frequency of type I versus type II is altered in the polymerase α and ε mutants relative to the wild type. Each prefers to develop a particular type of survivor. Moreover, type II recombination is mediated by the cell cycle checkpoint proteins Tel1 and Mec1, and telomere-telomere recombination is regulated by telomere binding protein Cdc13 and the Ku complex. Together, our results suggest that coordination between DNA replication machinery, DNA damage signaling, DNA recombination machinery, and the telomere protein-DNA complex allows telomere recombination to repair telomeric ends in the absence of telomerase.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Aisha Siddiqa ◽  
David Cavazos ◽  
Jeffery Chavez ◽  
Linda Long ◽  
Robert A. Marciniak

The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. InSaccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, theS. cerevisiaeRecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 240-242 ◽  
Author(s):  
Nicole D. Marino ◽  
Jenny Y. Zhang ◽  
Adair L. Borges ◽  
Alexander A. Sousa ◽  
Lina M. Leon ◽  
...  

Bacterial CRISPR-Cas systems protect their host from bacteriophages and other mobile genetic elements. Mobile elements, in turn, encode various anti-CRISPR (Acr) proteins to inhibit the immune function of CRISPR-Cas. To date, Acr proteins have been discovered for type I (subtypes I-D, I-E, and I-F) and type II (II-A and II-C) but not other CRISPR systems. Here, we report the discovery of 12 acr genes, including inhibitors of type V-A and I-C CRISPR systems. AcrVA1 inhibits a broad spectrum of Cas12a (Cpf1) orthologs—including MbCas12a, Mb3Cas12a, AsCas12a, and LbCas12a—when assayed in human cells. The acr genes reported here provide useful biotechnological tools and mark the discovery of acr loci in many bacteria and phages.


Sign in / Sign up

Export Citation Format

Share Document