scholarly journals The fitness costs and benefits of trisomy of each Candida albicans chromosome

Genetics ◽  
2021 ◽  
Author(s):  
Feng Yang ◽  
Robert T Todd ◽  
Anna Selmecki ◽  
Yuan-ying Jiang ◽  
Yong-bing Cao ◽  
...  

Abstract Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.

2021 ◽  
Author(s):  
Feng Yang ◽  
Yuan-ying Jiang ◽  
Yong-bing Cao ◽  
Judith Berman

AbstractCandida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress and cell wall stress. We found that, most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
FENG YANG ◽  
YUANYING JIANG ◽  
JUDITH BERMAN

Candida albicans is a prevalent human fungal pathogen. Azoles are the most widely used antifungal drugs. Drug tolerance in bacteria is well defined and thoroughly studied, but in fungi, the definition of drug tolerance and the mechanism that drive it are not well understood. Here, we found that a large proportion of clinical isolates were intrinsically tolerant to fluconazole, and/or could be induced by high temperature (37°C) to become tolerant (conditionally tolerant). When treated with inhibitory doses of fluconazole, non-tolerant strains became tolerant by forming aneuploids involving different chromosomes, with chromosome R duplication as the most recurrent mechanism. Tolerance determines the ability to grow in the presence of fluconazole and other azoles, in a manner independent of the MIC. Both temperature conditional tolerance and the associated aneuploidy were sensitive to FK506, an inhibitor of calcineurin. Intrinsic and conditional tolerance were also abolished by deletions of genes encoding the calcineurin (CMP1 and CNB1). However, the dependence of tolerance on calcineurin could be bypassed by a different aneuploid chromosome. Thus, fluconazole tolerance in C. albicans is regulated by temperature and by aneuploidy and is dependent upon aneuploidy, but this dependence can be bypassed by an additional aneuploidy.


2021 ◽  
Author(s):  
Marzia Rizzo ◽  
Natthapon Soisangwan ◽  
Jan Soetaert ◽  
Samuel Vega-Estevez ◽  
Anna Selmecki ◽  
...  

AbstractStress-induced genome instability in microbial organisms is emerging as a critical regulatory mechanism for driving rapid and reversible adaption to drastic environmental changes. In Candida albicans, a human fungal pathogen that causes life-threatening infections, genome plasticity confers increased virulence and antifungal drug resistance. Discovering the mechanisms regulating C. albicans genome plasticity is a priority to understand how this and other microbial pathogens establish life-threatening infections and develop resistance to antifungal drugs. We identified the SUMO protease Ulp2 as a critical regulator of C. albicans genome integrity through genetic screening. Deletion of ULP2 leads to hypersensitivity to genotoxic agents and increased genome instability. This increased genome diversity causes reduced fitness under standard laboratory growth conditions but enhances adaptation to stress, making ulp2Δ/Δ cells more likely to thrive in the presence of antifungal drugs. Whole-genome sequencing indicates that ulp2Δ/Δ cells counteract antifungal drug-induced stress by developing segmental aneuploidies of chromosome R and chromosome I. We demonstrate that intrachromosomal repetitive elements drive the formation of complex novel genotypes with adaptive power.


2019 ◽  
Author(s):  
Ognenka Avramovska ◽  
Meleah A. Hickman

AbstractOrganismal ploidy state and environmental stress impact the mutational spectrum and the mutational rate. The human fungal pathogen Candida albicans, serves as a clinically relevant model for studying the interaction between eukaryotic ploidy and stress-induced mutagenesis. In this study, we compared the rates and types of genome perturbations in diploid and tetraploid C. albicans following exposure to two classes of antifungal drugs, azoles and echinocandins. We measured mutations at three different scales: point mutation, loss-of-heterozygosity (LOH), and genome size changes in cells treated with fluconazole and caspofungin. We find that caspofungin induced higher rates of mutation than fluconazole, likely an indirect result from the stress associated with cell wall perturbations rather than an inherent genotoxicity. Furthermore, we found disproportionately elevated rates of LOH and genome size changes in response to both antifungals in tetraploid C. albicans compared to diploid C. albicans, suggesting that the magnitude of stress-induced mutagenesis results from an interaction between ploidy state and the environment. These results have both clinical and evolutionary implications for how fungal pathogens generate mutations in response to antifungal drug stress, and may facilitate the emergence of antifungal resistance.


2020 ◽  
Author(s):  
Yi Xu ◽  
Feng Yang

AbstractSphingolipids are important membrane lipid components of eukaryotic cells. In Candida albicans, chromosome 1 trisomy not only overcame the block of sphingolipid biosynthesis caused by aureobasidin A, but also altered tolerance to three of the four major classes of antifungal drugs. Two haploinsufficient genes on chromosome 1, PDR16 and IPT1, were associated with tolerance to aureobasidin A. This study illustrates an example of multi-drug tolerance caused by aneuploidy in the human fungal pathogen C. albicans.


2021 ◽  
Author(s):  
Xin Liu ◽  
Lili Zhong ◽  
Zhiming Ma ◽  
Yujie Sui ◽  
Jia’nan Xie ◽  
...  

AbstractThe human fungal pathogen Candida albicans can cause many kinds of infections, including biofilm infections on medical devices, while the available antifungal drugs are limited to only a few. In this study, alantolactone (Ala) demonstrated antifungal activities against C. albicans, as well as other Candida species, with a MIC of 72 μg/mL. Ala could also inhibit the adhesion, yeast-to-hyphal transition, biofilm formation and development of C. albicans. The exopolysaccharide of biofilm matrix and extracellular phospholipase production could also be reduced by Ala treatment. Ala could increase permeability of C. albicans cell membrane and ROS contribute to the antifungal activity of Ala. Overall, the present study suggests that Ala may provide a promising candidate for developing antifungal drugs against C. albicans infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Pitchayaphong Keereedach ◽  
Karnjana Hrimpeng ◽  
Khaemaporn Boonbumrung

Candidiasis caused by the fluconazole-resistant opportunistic pathogen Candida albicans is an intractable clinical problem that threatens immunocompromised or normal individuals. The most common mechanism of fluconazole resistance in C. albicans is the failure of cells to accumulate the drug due to increased expression of the efflux proteins encoded by the CDR1, CDR2, and MDR1 genes. Because the number of current antifungal drugs is limited, it is necessary to develop new therapeutic strategies. This study aimed to evaluate the antifungal activity of Thai Cajuput oil, its synergism with fluconazole, and its effect on efflux-pump gene expression in fluconazole-resistant C. albicans clinical isolates. Thus, we first detected the efflux-pump genes in fourteen resistant strains by PCR. The frequencies of the CDR1, CDR2, and MDR1 genes were 68.75%, 62.5%, and 87.5%, respectively, and these efflux-pump genes were distributed in three distinct patterns. Subsequently, the antifungal activity of Thai Cajuput oil was assessed by broth macrodilution and its synergism with fluconazole was evaluated by the checkerboard assay. The changes in the expression levels of CDR1, CDR2, and MDR1 after treatment with Thai Cajuput oil were analyzed by qRT-PCR. The MICs and MFCs of Thai Cajuput oil ranged from 0.31 to 1.25 μl/ml and 0.63 to 1.25 μl/ml, respectively, and its activity was defined as fungicidal activity. The MICs of the combination of Thai Cajuput oil and fluconazole were much lower than the MICs of the individual drugs. Interestingly, sub-MICs of Thai Cajuput oil significantly reduced the MDR1 expression level in resistant strains P < 0.05 . Our study suggests that Thai Cajuput oil can be used to create new potential combination therapies to combat the antifungal resistance of C. albicans.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
M. Anaul Kabir ◽  
Mohammad Asif Hussain ◽  
Zulfiqar Ahmad

Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2582 ◽  
Author(s):  
Adnane Sellam ◽  
Malcolm Whiteway

Candida albicans is an important human fungal pathogen, in terms of both its clinical significance and its use as an experimental model for scientific investigation. Although this opportunistic pathogen is a natural component of the human flora, it can cause life-threatening infections in immunosuppressed patients. There are currently a limited number of antifungal molecules and drug targets, and increasing resistance to the front-line therapeutics, demonstrating a clear need for new antifungal drugs. Understanding the biology of this pathogen is an important prerequisite for identifying new drug targets for antifungal therapeutics. In this review, we highlight some recent developments that help us to understand how virulence traits are regulated at the molecular level, in addition to technical advances that improve the ability of genome editing in C. albicans.


2012 ◽  
Vol 12 (2) ◽  
pp. 254-264 ◽  
Author(s):  
Clemens J. Heilmann ◽  
Alice G. Sorgo ◽  
Sepehr Mohammadi ◽  
Grazyna J. Sosinska ◽  
Chris G. de Koster ◽  
...  

ABSTRACTThe human fungal pathogenCandida albicanscan grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress. Quantitative mass spectrometry of the wall proteome using15N metabolically labeled wall proteins as internal standards revealed that at 42°C the levels of the β-glucan transglycosylases Phr1 and Phr2, the predicted chitin transglycosylases Crh11 and Utr2, and the wall maintenance protein Ecm33 increased. Consistent with our previous results for fluconazole stress, this suggests that a wall-remodeling response is mounted to relieve wall stress. Thermal stress as well as different wall and membrane stressors led to an increased phosphorylation of the mitogen-activated protein (MAP) kinase Mkc1, suggesting activation of the cell wall integrity (CWI) pathway. Furthermore, all wall and membrane stresses tested resulted in diminished cell separation. This was accompanied by decreased secretion of the major chitinase Cht3 and the endoglucanase Eng1 into the medium. Consistent with this,cht3cells showed a similar phenotype. When treated with exogenous chitinase, cell clusters both from stressed cells and mutant strains were dispersed, underlining the importance of Cht3 for cell separation. We propose that surface stresses lead to a conserved cell wall remodeling response that is mainly governed by Mkc1 and is characterized by chitin reinforcement of the wall and the expression of remedial wall remodeling enzymes.


Sign in / Sign up

Export Citation Format

Share Document