Differential Responses of White Adipose Tissue and Brown Adipose Tissue to Calorie Restriction During Aging

Author(s):  
Yunlu Sheng ◽  
Fan Xia ◽  
Lei Chen ◽  
Yifan Lv ◽  
Shan Lv ◽  
...  

Abstract Age-related adipose tissue dysfunction is potentially important in the development of insulin resistance and metabolic disorder. Caloric restriction (CR) is a robust intervention to reduce adiposity, improve metabolic health, and extend healthy life span. Both white adipose tissue (WAT) and brown adipose tissue (BAT) are involved in energy homeostasis. CR triggers the beiging of WAT in young mice; however, the effects of CR on beiging of WAT and function of BAT during aging are unclear. This study aimed to investigate how age and CR impact the beiging of WAT, the function of BAT, and metabolic health in mice. C57BL/6 mice were fed CR diet (40% less than the ad libitum [AL] diet) for 3 months initiated in young (3 months), middle-aged (12 months), and old (19 months) stage. We found age-related changes in different types of adipose tissue, including adipocyte enlargement, declined beiging of WAT, and declined thermogenic and β-oxidational function of BAT. Moreover, CR attenuated age-associated adipocyte enlargement and prevented the age-related decline in beiging potential of WAT. These protective effects on the beiging potential were significant in inguinal WAT at all three ages, which were significant in epididymal WAT at young and old age. In contrast, thermogenic and β-oxidational function of BAT further declined after CR in the young age group. In conclusion, our findings reveal the contribution of WAT beiging decline to age-related metabolic disorder and suggest nutritional intervention, specifically targeting WAT beiging, as an effective approach to metabolic health during aging.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Liu ◽  
Yuzhu Tan ◽  
Hui Ao ◽  
Wuwen Feng ◽  
Cheng Peng

Abstract Background Intermittent or prolonged exposure to severe cold stress disturbs energy homeostasis and can lead to hypothermia, heart failure, Alzheimer’s disease, and so on. As the typical “hot” traditional Chinese medicine, Aconite has been widely used to treat cold-associated diseases for thousands of years, but its critical mechanisms for the promotion of thermogenesis are not fully resolved. Gut microbiota and its metabolites play a crucial role in maintaining energy homeostasis. Here, we investigated whether the aqueous extracts of Aconite (AA) can enhance thermogenesis through modulation of the composition and metabolism of gut microbiota in hypothermic rats. Methods The therapeutic effects of AA on body temperature, energy intake, and the histopathology of white adipose tissue and brown adipose tissue of hypothermic rats were assessed. Microbiota analysis based on 16 S rRNA and targeted metabolomics for bile acids (BAs) were used to evaluate the composition of gut microbiota and BAs pool. The antibiotic cocktail treatment was adopted to further confirm the relationship between the gut microbiota and the thermogenesis-promoting effects of AA. Results Our results showed a sharp drop in rectal temperature and body surface temperature in hypothermic rats. Administration of AA can significantly increase core body temperature, surface body temperature, energy intake, browning of white adipose tissue, and thermogenesis of brown adipose tissue. Importantly, these ameliorative effects of AA were accompanied by the shift of the disturbed composition of gut microbiota toward a healthier profile and the increased levels of BAs. In addition, the depletion of gut microbiota and the reduction of BAs caused by antibiotic cocktails reduced the thermogenesis-promoting effect of AA. Conclusions Our results demonstrated that AA promoted thermogenesis in rats with hypothermia via regulating gut microbiota and BAs metabolism. Our findings can also provide a novel solution for the treatment of thermogenesis-associated diseases such as rheumatoid arthritis, obesity, and type 2 diabetes.


2018 ◽  
Vol 314 (1) ◽  
pp. E66-E77 ◽  
Author(s):  
Willem T. Peppler ◽  
Logan K. Townsend ◽  
Carly M. Knuth ◽  
Michelle T. Foster ◽  
David C. Wright

Exercise training has robust effects on subcutaneous inguinal white adipose tissue (iWAT), characterized by a shift to a brown adipose tissue (BAT)-like phenotype. Consistent with this, transplantation of exercise-trained iWAT into sedentary rodents activates thermogenesis and improves glucose homeostasis, suggesting that iWAT metabolism may contribute to the beneficial effects of exercise. However, it is yet to be determined if adaptations in iWAT are necessary for the beneficial systemic effects of exercise. To test this, male C57BL/6 mice were provided access to voluntary wheel running (VWR) or remained as a cage control (SED) for 11 nights after iWAT removal via lipectomy (LIPX) or SHAM surgery. We found that SHAM and LIPX mice with access to VWR ran similar distances and had comparable reductions in body mass, increased food intake, and increased respiratory exchange ratio (RER). Further, VWR improved indexes of glucose homeostasis and insulin tolerance in both SHAM and LIPX mice. The lack of effect of LIPX in the response to VWR was not explained by compensatory increases in markers of mitochondrial biogenesis and thermogenesis in skeletal muscle, epididymal white adipose tissue, or interscapular brown adipose tissue. Together, these data demonstrate that mice with and without iWAT have comparable adaptations to VWR, suggesting that iWAT may be dispensable for the metabolic health benefits of exercise.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Zhou ◽  
Maricela Robles-Murguia ◽  
Deepa Mathew ◽  
Giles E. Duffield

Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated thatId2null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role ofId2in the regulation of core body temperature over the circadian cycle and the impact ofId2deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature inId2−/− mice. Moreover, inId2−/− BAT, 30 genes includingIrs1,PPARs, andPGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact ofId2deficiency on energy homeostasis of mice in a sex-specific manner.


Sign in / Sign up

Export Citation Format

Share Document