scholarly journals Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue inId2Null Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Zhou ◽  
Maricela Robles-Murguia ◽  
Deepa Mathew ◽  
Giles E. Duffield

Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated thatId2null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role ofId2in the regulation of core body temperature over the circadian cycle and the impact ofId2deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature inId2−/− mice. Moreover, inId2−/− BAT, 30 genes includingIrs1,PPARs, andPGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact ofId2deficiency on energy homeostasis of mice in a sex-specific manner.

2018 ◽  
Vol 315 (6) ◽  
pp. E1224-E1231 ◽  
Author(s):  
Liping Qiao ◽  
Samuel Lee ◽  
Amanda Nguyen ◽  
William W. Hay ◽  
Jianhua Shao

To determine the role of UCP1-mediated thermogenesis in controlling maternal metabolic adaptation to pregnancy, energy metabolism of C57BL/6 wild-type (WT) and Ucp1 gene knockout ( Ucp1−/−) mice was studied during pregnancy. With the progression of pregnancy, maternal energy expenditure rates (EERs), expression of UCP1, and core body temperature steadily declined in WT dams. Despite no significant alterations in core body temperature and weight gain during pregnancy, Ucp1−/− dams exhibited lower rates in EER decline. High-fat (HF) feeding not only robustly increased maternal UCP1 expression and core body temperature but also abolished gestation-suppressed EER in WT dams. However, HF-increased EERs were significantly attenuated in Ucp1−/− dams. Significantly increased fetal body weights and fetal/placental weight ratio were detected in fetuses from Ucp1−/− dams compared with fetuses from WT dams. Markedly increased expression levels of glucose transporter 1 and amino acid transporters were also observed in placentas from Ucp1−/− dams. Furthermore, blood glucose concentrations of fetuses from Ucp1−/− dams were significantly higher than those of fetuses from WT dams, indicating that maternal UCP1 has an inhibitory effect on placental efficiency and fetal growth. Taken all together, this study demonstrated that maternal brown adipose tissue plays an important role in controlling maternal metabolic adaptation and placental nutrient transport.


Endocrinology ◽  
2014 ◽  
Vol 155 (2) ◽  
pp. 485-501 ◽  
Author(s):  
Dyan Sellayah ◽  
Devanjan Sikder

The aging process causes an increase in percent body fat, but the mechanism remains unclear. In the present study we examined the impact of aging on brown adipose tissue (BAT) thermogenic activity as potential cause for the increase in adiposity. We show that aging is associated with interscapular BAT morphologic abnormalities and thermogenic dysfunction. In vitro experiments revealed that brown adipocyte differentiation is defective in aged mice. Interscapular brown tissue in aged mice is progressively populated by adipocytes bearing white morphologic characteristics. Aged mice fail to mobilize intracellular fuel reserves from brown adipocytes and exhibit deficiency in homeothermy. Our results suggest a role for orexin (OX) signaling in the regulation of thermogenesis during aging. Brown fat dysfunction and age-related assimilation of fat mass were accelerated in mice in which OX-producing neurons were ablated. Conversely, OX injections in old mice increased multilocular morphology, increased core body temperature, improved cold tolerance, and reduced adiposity. These results argue that BAT can be targeted for interventions to reverse age-associated increase in fat mass.


2014 ◽  
Vol 306 (6) ◽  
pp. E681-E687 ◽  
Author(s):  
Dalya M. Lateef ◽  
Gustavo Abreu-Vieira ◽  
Cuiying Xiao ◽  
Marc L. Reitman

Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout ( Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Juan Liu ◽  
Yuzhu Tan ◽  
Hui Ao ◽  
Wuwen Feng ◽  
Cheng Peng

Abstract Background Intermittent or prolonged exposure to severe cold stress disturbs energy homeostasis and can lead to hypothermia, heart failure, Alzheimer’s disease, and so on. As the typical “hot” traditional Chinese medicine, Aconite has been widely used to treat cold-associated diseases for thousands of years, but its critical mechanisms for the promotion of thermogenesis are not fully resolved. Gut microbiota and its metabolites play a crucial role in maintaining energy homeostasis. Here, we investigated whether the aqueous extracts of Aconite (AA) can enhance thermogenesis through modulation of the composition and metabolism of gut microbiota in hypothermic rats. Methods The therapeutic effects of AA on body temperature, energy intake, and the histopathology of white adipose tissue and brown adipose tissue of hypothermic rats were assessed. Microbiota analysis based on 16 S rRNA and targeted metabolomics for bile acids (BAs) were used to evaluate the composition of gut microbiota and BAs pool. The antibiotic cocktail treatment was adopted to further confirm the relationship between the gut microbiota and the thermogenesis-promoting effects of AA. Results Our results showed a sharp drop in rectal temperature and body surface temperature in hypothermic rats. Administration of AA can significantly increase core body temperature, surface body temperature, energy intake, browning of white adipose tissue, and thermogenesis of brown adipose tissue. Importantly, these ameliorative effects of AA were accompanied by the shift of the disturbed composition of gut microbiota toward a healthier profile and the increased levels of BAs. In addition, the depletion of gut microbiota and the reduction of BAs caused by antibiotic cocktails reduced the thermogenesis-promoting effect of AA. Conclusions Our results demonstrated that AA promoted thermogenesis in rats with hypothermia via regulating gut microbiota and BAs metabolism. Our findings can also provide a novel solution for the treatment of thermogenesis-associated diseases such as rheumatoid arthritis, obesity, and type 2 diabetes.


2020 ◽  
Vol 24 (3) ◽  
pp. 165-173
Author(s):  
Masoumeh Kourosh Arami ◽  
◽  
Alireza Komaki ◽  
Shahriar Gharibzadeh ◽  
◽  
...  

Thermoregulation is the maintenance of the core body temperature. The regulation of body temperature is one of the most important functions of the nervous system. Nucleus raphe magnus, as a central circuit coordinates the homeostatic response and maintains body temperature during environmental temperature challenges and adjusts body temperature during the inflammatory response and behavioral states and in response to decreasing energy homeostasis. Our aim in this review is the understanding of thermoregulation by raphe magnus in mammals. This review summarizes the basic concepts of thermoregulation and subsequently assesses the physiological responses to cold stress, including skin blood flow control, sweating, sympathetic-derived cutaneous vasoconstriction and peripheral thermoregulatory control in brown adipose tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roberto Diaz-Marin ◽  
Sergio Crespo-Garcia ◽  
Ariel M. Wilson ◽  
Manuel Buscarlet ◽  
Agnieszka Dejda ◽  
...  

AbstractThe beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.


2009 ◽  
Vol 296 (3) ◽  
pp. R831-R843 ◽  
Author(s):  
C. J. Madden ◽  
S. F. Morrison

The paraventricular nucleus of the hypothalamus (PVH) plays an important role in energy homeostasis, regulating neuroendocrine, behavioral, and autonomic functions. However, the role of the PVH in regulating thermogenesis and energy expenditure in brown adipose tissue (BAT) is unclear. The present study investigated the effect of activating neurons within the PVH on BAT thermogenesis. In urethane- and chloralose-anesthetized, artificially ventilated rats maintained at a core body temperature of 37.0–38.0°C, microinjection of N-methyl-d-aspartate (NMDA, 12 pmol in 60 nl) in the PVH did not increase BAT sympathetic nerve activity (SNA) or BAT thermogenesis. In contrast, the increase in BAT SNA evoked by body cooling was completely reversed by microinjection of NMDA in the PVH. Additionally, the increases in BAT SNA evoked by body cooling, by microinjection of prostaglandin E2 (170 pmol in 60 nl) in the medial preoptic area or by microinjection of bicuculline (30 pmol in 60 nl) in the dorsomedial hypothalamus were completely reversed by microinjection of bicuculline (30 pmol in 60 nl) in the PVH. Although the increases in BAT SNA and thermogenesis evoked by microinjection of NMDA (12 pmol in 60 nl) in the raphe pallidus (RPa) was markedly attenuated following microinjection of bicuculline (30 pmol) in the PVH, the increases in BAT SNA and thermogenesis evoked by microinjection of bicuculline (30 pmol in 60 nl) in the RPa were unaffected by microinjection of bicuculline in the PVH. These results demonstrate that disinhibition of neurons in the PVH inhibits BAT SNA likely via activation of a GABAergic input to BAT sympathetic premotor neurons in the RPa.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Keisuke Suzuki ◽  
Hirokazu Ohtaki ◽  
Motoyasu Nakamura ◽  
Hiroki Yamaga ◽  
...  

Abstract Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Fredrik A. F. Markussen ◽  
Vebjørn J. Melum ◽  
Béatrice Bothorel ◽  
David G. Hazlerigg ◽  
Valérie Simonneaux ◽  
...  

Abstract Background Hibernation is a physiological and behavioural adaptation that permits survival during periods of reduced food availability and extreme environmental temperatures. This is achieved through cycles of metabolic depression and reduced body temperature (torpor) and rewarming (arousal). Rewarming from torpor is achieved through the activation of brown adipose tissue (BAT) associated with a rapid increase in ventilation frequency. Here, we studied the rate of rewarming in the European hamster (Cricetus cricetus) by measuring both BAT temperature, core body temperature and ventilation frequency. Results Temperature was monitored in parallel in the BAT (IPTT tags) and peritoneal cavity (iButtons) during hibernation torpor-arousal cycling. We found that increases in brown fat temperature preceded core body temperature rises by approximately 48 min, with a maximum re-warming rate of 20.9℃*h-1. Re-warming was accompanied by a significant increase in ventilation frequency. The rate of rewarming was slowed by the presence of a spontaneous thoracic mass in one of our animals. Core body temperature re-warming was reduced by 6.2℃*h-1 and BAT rewarming by 12℃*h-1. Ventilation frequency was increased by 77% during re-warming in the affected animal compared to a healthy animal. Inspection of the position and size of the mass indicated it was obstructing the lungs and heart. Conclusions We have used a minimally invasive method to monitor BAT temperature during arousal from hibernation illustrating BAT re-warming significantly precedes core body temperature re-warming, informing future study design on arousal from hibernation. We also showed compromised re-warming from hibernation in an animal with a mass obstructing the lungs and heart, likely leading to inefficient ventilation and circulation.


Sign in / Sign up

Export Citation Format

Share Document