scholarly journals Predicting Age From Large-Scale Brain Networks: Evidence From the Cam-CAN Dataset Across the Lifespan

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 365-366
Author(s):  
Meghan Caulfield ◽  
Irene Kan ◽  
Evangelia Chrysikou

Abstract Changes in cognition observed in aging (e.g. a shift from prioritization of fluid cognition in young adulthood toward an emphasis on crystalized knowledge and semantic cognition in older adulthood) are believed to reflect alterations in neural connectivity in aging. Recent work specifically highlights how increased connectivity between executive control (EC) regions and default mode network (DMN) may underlie characteristic shifts in cognitive abilities between younger and older adults. However, the contribution of the salience network, which plays a crucial role in mediating the dynamic interplay between EC and DMN, is relatively overlooked. To extend previous work, we used a large cohort (N = 547) of participants from the Cam-CAN database (18-88 years old) to examine whether resting-state functional connectivity between EC and DMN can reliably predict participant age. We further examined how addition of the salience network impacts the hypothesized increased connectivity between EC and DMN as a result of aging. A series of multiple regression analyses using functional connectivity and age as variables revealed that connectivity between EC and DMN regions (specifically between dorsolateral and ventromedial prefrontal cortex and parietal regions, including the precuneus) accounted for a significant portion of age variability and that the inclusion of the salience network improved the models’ explanatory power. Follow-up analyses by age cohort further highlighted that these relationships dynamically change across the lifespan. We will discuss these findings in the context of default-executive coupling hypothesis for aging and propose avenues for future research in refinement of this model.

Cephalalgia ◽  
2021 ◽  
pp. 033310242110466
Author(s):  
Roberta Messina ◽  
Maria A Rocca ◽  
Paola Valsasina ◽  
Paolo Misci ◽  
Massimo Filippi

Objective To elucidate the hypothalamic involvement in episodic migraine and investigate the association between hypothalamic resting state functional connectivity changes and migraine patients’ clinical characteristics and disease progression over the years. Methods Ninety-one patients with episodic migraine and 73 controls underwent interictal resting state functional magnetic resonance imaging. Twenty-three patients and controls were re-examined after a median of 4.5 years. Hypothalamic resting state functional connectivity changes were investigated using a seed-based correlation approach. Results At baseline, a decreased functional interaction between the hypothalamus and the parahippocampus, cerebellum, temporal, lingual and orbitofrontal gyrus was found in migraine patients versus controls. Increased resting state functional connectivity between the hypothalamus and bilateral orbitofrontal gyrus was demonstrated in migraine patients at follow-up versus baseline. Migraine patients also experienced decreased right hypothalamic resting state functional connectivity with ipsilateral lingual gyrus. A higher migraine attack frequency was associated with decreased hypothalamic-lingual gyrus resting state functional connectivity at baseline, while greater headache impact at follow-up correlated with decreased hypothalamic-orbitofrontal gyrus resting state functional connectivity at baseline. At follow-up, a lower frequency of migraine attacks was associated with higher hypothalamic-orbitofrontal gyrus resting state functional connectivity. Conclusions During the interictal phase, the hypothalamus modulates the activity of pain and visual processing areas in episodic migraine patients. The hypothalamic-cortical interplay changes dynamically over time according to patients’ clinical features.


2020 ◽  
Author(s):  
Steve Mehrkanoon

AbstractSynchronous oscillations of neuronal populations support resting-state cortical activity. Recent studies indicate that resting-state functional connectivity is not static, but exhibits complex dynamics. The mechanisms underlying the complex dynamics of cortical activity have not been well characterised. Here, we directly apply singular value decomposition (SVD) in source-reconstructed electroencephalography (EEG) in order to characterise the dynamics of spatiotemporal patterns of resting-state functional connectivity. We found that changes in resting-state functional connectivity were associated with distinct complex topological features, “Rich-Club organisation”, of the default mode network, salience network, and motor network. Rich-club topology of the salience network revealed greater functional connectivity between ventrolateral prefrontal cortex and anterior insula, whereas Rich-club topologies of the default mode networks revealed bilateral functional connectivity between fronto-parietal and posterior cortices. Spectral analysis of the dynamics underlying Rich-club organisations of these source-space network patterns revealed that resting-state cortical activity exhibit distinct dynamical regimes whose intrinsic expressions contain fast oscillations in the alpha-beta band and with the envelope-signal in the timescale of < 0.1 Hz. Our findings thus demonstrated that multivariate eigen-decomposition of source-reconstructed EEG is a reliable computational technique to explore how dynamics of spatiotemporal features of the resting-state cortical activity occur that oscillate at distinct frequencies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


NeuroImage ◽  
2018 ◽  
Vol 173 ◽  
pp. 448-459 ◽  
Author(s):  
Oliver G. Bosch ◽  
Fabrizio Esposito ◽  
Dario Dornbierer ◽  
Michael M. Havranek ◽  
Robin von Rotz ◽  
...  

2018 ◽  
Vol 9 (4) ◽  
pp. 663-668 ◽  
Author(s):  
Alicia M Allen ◽  
Nicole P Yuan ◽  
Betsy C Wertheim ◽  
Laurie Krupski ◽  
Melanie L Bell ◽  
...  

Abstract Research suggests that women may have poorer tobacco cessation outcomes than men; however, the literature is somewhat mixed. Less is known about gender differences in cessation within quitline settings. This study examined gender differences in the utilization of services (i.e., coaching sessions, pharmacotherapy) and tobacco cessation among callers to the Arizona Smokers’ Helpline (ASHLine). The study sample included callers enrolled in ASHLine between January 2011 and June 2016. We tracked number of completed coaching sessions. At the 7-month follow-up, callers retrospectively reported use of cessation pharmacotherapy (gum, patch, or lozenge), as well as current tobacco use. Associations between gender and tobacco cessation were tested using logistic regression models. At month 7, 36.4% of women (3,277/9,004) and 40.3% of men (2,960/7,341) self-reported 30-day point prevalence abstinence. Compared to men, fewer women reported using pharmacotherapy (women: 71.4% vs. men: 73.6%, p = .01) and completed at least five coaching sessions (women: 35.1% vs. men: 38.5%, p < .01). After adjusting for baseline characteristics, women had significantly lower odds of reporting tobacco cessation than men (OR = 0.91, 95% CI: 0.84 to 0.99). However, after further adjustment for use of pharmacotherapy and coaching, there was no longer a significant relationship between gender and tobacco cessation (OR: 0.96, 95% CI: 0.87 to 1.06). Fewer women than men reported tobacco cessation. Women also had lower utilization of quitline cessation services. Although the magnitude of these differences were small, future research on improving the utilization of quitline services among women may be worth pursuing given the large-scale effects of tobacco.


2017 ◽  
Vol 114 (50) ◽  
pp. 13278-13283 ◽  
Author(s):  
Jarod L. Roland ◽  
Abraham Z. Snyder ◽  
Carl D. Hacker ◽  
Anish Mitra ◽  
Joshua S. Shimony ◽  
...  

Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.


2012 ◽  
Vol 108 (8) ◽  
pp. 2242-2263 ◽  
Author(s):  
Eun Young Choi ◽  
B. T. Thomas Yeo ◽  
Randy L. Buckner

The striatum is connected to the cerebral cortex through multiple anatomical loops that process sensory, limbic, and heteromodal information. Tract-tracing studies in the monkey reveal that these corticostriatal connections form stereotyped patterns in the striatum. Here the organization of the striatum was explored in the human with resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered with nonlinear deformation of the striatum in combination with surface-based alignment of the cerebral cortex. fcMRI maps derived from seed regions placed in the foot and tongue representations of the motor cortex yielded the expected inverted somatotopy in the putamen. fcMRI maps derived from the supplementary motor area were located medially to the primary motor representation, also consistent with anatomical studies. The topography of the complete striatum was estimated and replicated by assigning each voxel in the striatum to its most strongly correlated cortical network in two independent groups of 500 subjects. The results revealed at least five cortical zones in the striatum linked to sensorimotor, premotor, limbic, and two association networks with a topography globally consistent with monkey anatomical studies. The majority of the human striatum was coupled to cortical association networks. Examining these association networks further revealed details that fractionated the five major networks. The resulting estimates of striatal organization provide a reference for exploring how the striatum contributes to processing motor, limbic, and heteromodal information through multiple large-scale corticostriatal circuits.


2020 ◽  
Author(s):  
Christiane Wesarg ◽  
Ilya M. Veer ◽  
Nicole Y. L. Oei ◽  
Laura S. Daedelow ◽  
Tristram A. Lett ◽  
...  

AbstractExtensive research has demonstrated that rs1360780, a common single nucleotide polymorphism within the FKBP5 gene, interacts with early-life stress in predicting psychopathology. Previous results suggest that carriers of the TT genotype of rs1360780 who were exposed to child abuse show differences in structure and functional activation of emotion-processing brain areas belonging to the salience network. Extending these findings on intermediate phenotypes of psychopathology, we examined if the interaction between rs1360780 and child abuse predicts resting-state functional connectivity (rsFC) between the amygdala and other areas of the salience network. We analyzed data of young European adults from the general population (N = 774; mean age = 18.76 years) who took part in the IMAGEN study. In the absence of main effects of genotype and abuse, a significant interaction effect was observed for rsFC between the right centromedial amygdala and right posterior insula (p < .025, FWE-corrected), which was driven by stronger rsFC in TT allele carriers with a history of abuse. Our results suggest that the TT genotype of rs1360780 may render individuals with a history of abuse more vulnerable to functional changes in communication between brain areas processing emotions and bodily sensations, which could underlie or increase risk for psychopathology.


Sign in / Sign up

Export Citation Format

Share Document