scholarly journals Stem Cells: The Future Promise of Stem Cells in Healthspan

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 742-743
Author(s):  
Ashley Webb

Abstract Tissue specific stem cells are critical for maintenance and repair of tissues and organs throughout life. However, during aging, the functionality of stem cells declines, contributing to tissue decline. This symposium will focus on the mechanisms underlying stem cell aging in various compartments, including muscle, brain and the hematopoietic system.

2021 ◽  
Vol 13 (4) ◽  
pp. 337-49
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Aging tissues lose their homeostatic and regenerative capacities, which has been linked to the degeneration of the stem cells such as the tissue-specific stem cells, the stem cell niches, and systemic cues that regulate stem cell activity.CONTENT: The maintenance of tissue homeostatic and regeneration dependent on its tissue-specific stem cells, that —long-lived cells with the ability to self-renew and differentiate into mature cells. Understanding the molecular mechanisms that governs stem cell survival, self-renewal, quiescence, proliferation, and commitment to specific differentiated cell lineages is critical for identifying the drivers and effectors of age-associated stem cell failure. Such understanding will be critical for the development of therapeutic approaches that can decrease, and possibly reverse and repair the age-related degenerative process in aging tissues.SUMMARY: The exact mechanisms and reasons of aging process were not fully elucidated until now. Stem cells is one of the keys for maintaining tissues heath and understanding how stem cell decline with age will give us opportunities to find strategy in increasing somatic stem cells regenerative capacity and delay the aging process.KEYWORDS: adult stem cell, aging, epigenetic, metabolism, quiescence, senescence


2020 ◽  
Vol 100 (1) ◽  
pp. 90-97
Author(s):  
R.L. Yang ◽  
H.M. Huang ◽  
C.S. Han ◽  
S.J. Cui ◽  
Y.K. Zhou ◽  
...  

To investigate the characteristics and molecular events of dental pulp stem cells (DPSCs) for tissue regeneration with aging, we isolated and analyzed the stem cells from human exfoliated deciduous teeth (SHED) and permanent teeth of young (Y-DPSCs) and old (A-DPSCs) adults. Results showed that the stemness and osteogenic differentiation capacity of DPSCs decreased with aging. The RNA sequencing results showed that glycine, serine, and threonine metabolism was one of the most enriched gene clusters among SHED, Y-DPSCs, and A-DPSCs, according to analysis based on the Kyoto Encyclopedia of Genes and Genomes. The expression of serine metabolism–related enzymes phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate (PHGDH) decreased in A-DPSCs and provided less methyl donor S-adenosylmethionine (SAM) for DNA methylation, leading to the hypomethylation of the senescence marker p16 (CDNK2A). Furthermore, the proliferation and differentiation capacity of Y-DPSCs and SHED decreased after PHGDH siRNA treatment, which reduced the level of SAM. Convincingly, the ratios of PSAT1-, PHGDH-, or proliferating cell nuclear antigen–positive cells in the dental pulp of old permanent teeth were less than those in the dental pulp of deciduous teeth and young permanent teeth. In summary, the stemness and differentiation capacity of DPSCs decreased with aging. The decreased serine metabolism in A-DPSCs upregulated the expression of p16 via attenuating its DNA methylation, resulting in DPSC aging. Our finding indicated that serine metabolism and 1 carbon unit participated in stem cell aging, which provided new direction for stem cell aging study and intervention.


2019 ◽  
Vol 98 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Nagarajan Maharajan ◽  
Karthikeyan Vijayakumar ◽  
Chul Ho Jang ◽  
Goang-Won Cho

Biology Open ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Aaron M. Savage ◽  
Ramiro Alberio ◽  
Andrew D. Johnson

ABSTRACT In vitro production of tissue-specific stem cells [e.g. haematopoietic stem cells (HSCs)] is a key goal of regenerative medicine. However, recent efforts to produce fully functional tissue-specific stem cells have fallen short. One possible cause of shortcomings may be that model organisms used to characterize basic vertebrate embryology (Xenopus, zebrafish, chick) may employ molecular mechanisms for stem cell specification that are not conserved in humans, a prominent example being the specification of primordial germ cells (PGCs). Germ plasm irreversibly specifies PGCs in many models; however, it is not conserved in humans, which produce PGCs from tissue termed germline-competent mesoderm (GLCM). GLCM is not conserved in organisms containing germ plasm, or even in mice, but understanding its developmental potential could unlock successful production of other stem cell types. GLCM was first discovered in embryos from the axolotl and its conservation has since been demonstrated in pigs, which develop from a flat-disc embryo like humans. Together these findings suggest that GLCM is a conserved basal trait of vertebrate embryos. Moreover, the immortal nature of germ cells suggests that immortality is retained during GLCM specification; here we suggest that the demonstrated pluripotency of GLCM accounts for retention of immortality in somatic stem cell types as well. This article has an associated Future Leaders to Watch interview with the author of the paper.


Author(s):  
Sarah Karimi ◽  
Setareh Raoufi ◽  
Zohreh Bagher

Introduction: Aging is a natural phenomenon that is caused by changes in the cells of the body. Theoretically, aging starts from birth and lasts throughout life. These changes affect the function of the cells. Also, in old tissues, the capacity for homeostasis and tissue repair is decline due to destructive changes in specific tissue stem cells, niche of stem cells and systemic factors that regulate stem cell activity. Understanding molecular pathways that disrupt stem cell function during aging is crucial for the development of new treatments for aging-associated diseases. In this article, the symptoms of stem cell aging and the key molecular pathways that are commonly used for the aging of stem cells were discussed. We will consider experimental evidence for all of the mechanisms and evaluate the way that can slow down or even stop the aging process. Finally, we will look at the aging process of three types of stem cells.


2014 ◽  
Vol 42 (3) ◽  
pp. 663-669 ◽  
Author(s):  
M. Carmen Ortells ◽  
William M. Keyes

Adult tissue homoeostasis requires continual replacement of cells that are lost due to normal turnover, injury and disease. However, aging is associated with an overall decline in tissue function and homoeostasis, suggesting that the normal regulatory processes that govern self-renewal and regeneration may become impaired with age. Tissue-specific SCs (stem cells) lie at the apex of organismal conservation and regeneration, ultimately being responsible for continued tissue maintenance. In many tissues, there are changes in SC numbers, or alteration of their growth properties during aging, often involving imbalances in tumour-suppressor- and oncogene-mediated pathways. Uncovering the molecular mechanisms leading to changes in SC function during aging will provide an essential tool to address tissue-specific age-related pathologies. In the present review, we summarize the age-related alterations found in different tissue SC populations, highlighting recently identified changes in aged HFSCs (hair-follicle SCs) in the skin.


2018 ◽  
Vol 74 (9) ◽  
pp. 1396-1407 ◽  
Author(s):  
Mujib Ullah ◽  
Zhongjie Sun

Abstract Understanding the effect of molecular pathways involved in the age-dependent deterioration of stem cell function is critical for developing new therapies. The overexpression of Klotho (KL), an antiaging protein, causes treated animal models to enjoy extended life spans. Now, the question stands: Does KL deficiency accelerate stem cell aging and telomere shortening? If so, what are the specific mechanisms by which it does this, and is cycloastragenol (CAG) treatment enough to restore telomerase activity in aged stem cells? We found that KL deficiency diminished telomerase activity by altering the expression of TERF1 and TERT, causing impaired differentiation potential, pluripotency, cellular senescence, and apoptosis in stem cells. Telomerase activity decreased with KL-siRNA knockdown. This suggests that both KL and telomeres regulate the stem cell aging process through telomerase subunits TERF1, POT1, and TERT using the TGFβ, Insulin, and Wnt signaling. These pathways can rejuvenate stem cell populations in a CD90-dependent mechanism. Stem cell dysfunctions were largely provoked by KL deficiency and telomere shortening, owing to altered expression of TERF1, TGFβ1, CD90, POT1, TERT, and basic fibroblast growth factor (bFGF). The CAG treatment partially rescued telomerase deterioration, suggesting that KL plays a critical role in life-extension by regulating telomere length and telomerase activity.


2011 ◽  
Vol 193 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Ling Liu ◽  
Thomas A. Rando

Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document