scholarly journals Both Vitamin D Supplementation and HIIT Boost Muscle VDR Expression, Which May Underlie Benefits for Frailty

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 681-682
Author(s):  
Ken Seldeen ◽  
Ramkumar Thiyagarajan ◽  
Merced Leiker ◽  
Reem Berman ◽  
Yonas Redae ◽  
...  

Abstract Frailty is a condition of poor response to stressors that increases susceptibility to adverse outcomes - including disability and death. Declining physical function is an important hallmark of frailty, and we previously published that long term vitamin D insufficiency from young to middle-age leads to declines in endurance and gait disturbances. Furthermore, we report that aged mice (24-months) made vitamin D insufficient for 4 months exhibit increased frailty, whereas those made hyper-sufficient do not. Exercise, including short session high intensity interval training (HIIT - 10 minutes/3x-week), also reverses frailty in aged mice. Here we investigate the impacts of aging, vitamin D, and exercise on underlying muscle quality and muscle stem cell activity. Our preliminary data reveal muscle vitamin D receptor (VDR) expression is lower in aged mice (24-28 months) relative to young mice (6 months). Yet HIIT, either one hour after a single session or following 6 weeks, increases VDR expression. HIIT also increases myonuclear accretion in muscle fibers – an indicator of in vivo stem cell activity – and stimulates progenitor cells proliferation ex vivo. Likewise, we observe that vitamin D hyper supplementation alone also increases muscle VDR expression and the number of satellite cells. These data indicate that both vitamin D supplementation and HIIT independently enhance VDR expression in skeletal muscle with associated greater satellite and muscle progenitor cell activity. These data critically link vitamin D physiology and HIIT in muscle, and thus provide a mechanistic basis for their benefits for muscle quality, function, and health during aging.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1705-1705
Author(s):  
Joyce S.G Yeoh ◽  
Ronald van Os ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
...  

Abstract Fibroblast Growth Factors (FGF) are a large family of signaling molecules widely involved in tissue development, maintenance and repair. Little is known about the role of FGF/FGF-receptor signaling in the regulation of adult hematopoietic stem cells (HSC). In this study, we assessed the potential of exogenously added FGF-1/2, or retrovirally overexpressed FGF-1 to preserve HSC function in vitro and in vivo. First, we demonstrate that in vitro culture of unfractionated mouse bone marrow cells, in serum-free medium, supplemented with FGF-1 or FGF-2 or FGF-1 + 2 resulted in the robust generation of long-term repopulating (LTR) HSCs. Cultures were maintained for 12 weeks and during that time in vivo competitive reconstitution assays were performed. Stem cell activity was detectable at 3, 5, and 8 weeks after initiation of culture, but lost after 12 weeks. However, whereas 3 and 5 week cultured cells provided radioprotection in non-competitive assays, animals transplanted with 8 or 12 week cultured cells succumbed due to bone marrow failure. So far, we have been unable to expand single, highly purified Lin−Sca-1+c-Kit+ using FGF-1 + 2. Consequently, we speculated that essential intermediate cell populations or signals are required for FGF-induced stem cell conservation. To test this we cultured highly purified CD45.1 Lin−Sca-1+c-Kit+ cells in a co-culture with CD45.2 unfractionated BM. Co-cultured cells were transplanted after 5 weeks in lethally irradiated recipients, and CD45.1 chimerism levels were assessed. High levels of CD45.1 chimerism confirmed that Lin−Sca-1+c-Kit+ cells require an accessory signal in addition to FGF to induced stem cell activity in vitro. We subsequently tested stem cell potential of cells cultured in FGF-1 + 2 for 5 weeks, with the addition of SCF + IL-11 + Flt3L for the last 2, 4 or 7 days. Cell numbers increased with increasing time of growth factor presence. However, only when growth factors were present for 2 days engraftment of cultured cells in a competitive repopulation assay was increased 3.5-fold. Finally, we show by immunohistochemistry that ~10% of freshly isolated Lin−Sca-1+c-Kit+ expresses high levels of FGF-1. Retroviral overexpression of FGF-1 in stem cells resulted in increased growth potential and sustained clonogenic activity in vitro. Upon transplantation of transduced stem cells, FGF-1 overexpression resulted in increased white blood cell counts 4 weeks post-transplant compared to control animals. Most notable was a marked granulocytosis in FGF-1 overexpressing recipients Our results reveal FGF as an important regulator of HSC signaling and homeostasis. Importantly, in the presence of FGF stem cells can be maintained in vitro for 2 months. These findings open novel avenues for in vitro manipulation of stem cells for future clinical therapies.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 36-36
Author(s):  
Mehrnaz Safaee Talkhoncheh ◽  
Fredrik Ek ◽  
Aurelie Baudet ◽  
Christine Karlsson ◽  
Roger Olsson ◽  
...  

Abstract Despite extensive studies over the last decades, little is known about the mechanisms governing human hematopoietic stem cell (HSC) fate decisions. In particular, it has been challenging to define culture conditions in which HSCs can be expanded for clinical benefit. Application of small molecule screening to modulate stem cells has emerged as a useful tool for identification of new compounds with ability to expand hematopoietic stem and progenitor cells (HSPCs). Such screens have mainly relied on the expression of CD34 as predictor of stem cell activity in cultured cells. However, CD34 defines a broad repertoire of progenitor cells and does not define stem cell function. We found that the long-term repopulation potential of cultured human HSPCs is exclusively contained within a discrete cell population co-expressing CD34 and CD90, while the vast majority of progenitor cells are found in the CD34+CD90- population. Tracking the CD34+ CD90+ population is therefore a sensitive and specific tool to predict stem cell activity in cultured hematopoietic cells and provides a good basis for a screen aimed at discovering modifiers of stem cell expansion. To search broadly for novel and potential modifiers of ex vivo HSCs expansion we next developed and optimized a small molecule screen in human cord blood (CB) derived CD34+ cells. We screened >500 small molecules from 8 different annotated chemical libraries for the phenotypic expansion of CD34+ CD90+ cells following a 6-day culture in serum-free medium supplemented with stem cell factor (SCF), thrombopoietin (TPO) and fms-like tyrosine kinase 3 ligand (FL). The numbers of CD34+ CD90+ cells for each molecule, tested at two different concentrations, was compared to DMSO treated controls. Following the initial screen, several candidate hits were selected and subjected to a dose response validation experiment from which we selected four top candidate molecules. Two of these molecules were histone deacetylase (HDAC) inhibitors, which recently have been reported to facilitate expansion of CB derived HSCs. One of the top candidates, Ciclopirox ethanolamine (CE), had previously not been implicated in HSC expansion. Ciclopirox ethanolamine is known as an antifungal agent and iron chelator. It has further been shown to suppress cancer cell survival through inhibition of Wnt/beta catenin signaling. We found that CB cells cultured with CE had a 4-fold increase in CD34+90+ cell number compared to DMSO treated controls following 6 days of culture. Interestingly, the total cell count was not different, suggesting a specific increase in CD34+ CD90+ cell number rather than an overall higher proliferation rate. When plated in methylcellulose, CE cultured cells generated increased numbers of myeloid colonies. Moreover, CE treated cells gave rise to multilineage colonies (CFU-GEMM) that could not be detected from the control cultures. To further test the functional capacity of cells cultured with CE, we transplanted cultured equivalents of 30,000 CB CD34+ cells (cultured with or without CE) into sub lethally irradiated NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Human hematopoietic reconstitution in peripheral blood was determined 16 weeks later. Mice transplanted with CE cultured cells showed higher human CD45 engraftment 16 weeks post transplant compared to control cells (33.2±6.7% vs 14.6±5% p=0.04). The engrafted cells contributed to both myeloid and lymphoid lineages. This shows that Ciclopirox ethanolamine enhances the long-term engraftment capacity of ex vivo cultured HSCs and suggests that it should be considered in stem cell expansion protocols, either alone or in combination with other molecules. We are currently addressing the basis for the increased stem cell activity mediated by Ciclopirox ethanolamine using parameters for differentiation, cell cycling and apoptosis. In addition, we are comparing Ciclopirox ethanolamine with other recently defined modifiers of HSC expansion. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 26 (8) ◽  
pp. 837-844 ◽  
Author(s):  
M Kanai ◽  
F Hirayama ◽  
M Yamaguchi ◽  
J Ohkawara ◽  
N Sato ◽  
...  

2016 ◽  
Vol 21 (9) ◽  
pp. 956-964 ◽  
Author(s):  
Guruchandar Arulmozhivarman ◽  
Martin Stöter ◽  
Marc Bickle ◽  
Martin Kräter ◽  
Manja Wobus ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) generate all cell types of the blood and are crucial for homeostasis of all blood lineages in vertebrates. Hematopoietic stem cell transplantation (HSCT) is a rapidly evolving technique that offers potential cure for hematologic cancers, such as leukemia or lymphoma. HSCT may be autologous or allogenic. Successful HSCT depends critically on the abundance of engraftment-competent HSPCs, which are currently difficult to obtain in large numbers. Therefore, finding compounds that enhance either the number or the activity of HSPCs could improve prognosis for patients undergoing HSCT and is of great clinical interest. We developed a semiautomated screening method for whole zebrafish larvae using conventional liquid handling equipment and confocal microscopy. Applying this pipeline, we screened 550 compounds in triplicate for proliferation of HSPCs in vivo and identified several modulators of hematopoietic stem cell activity. One identified hit was valproic acid (VPA), which was further validated as a compound that expands and maintains the population of HSPCs isolated from human peripheral blood ex vivo. In summary, our in vivo zebrafish imaging screen identified several potential drug candidates with clinical relevance and could easily be further expanded to screen more compounds.


2007 ◽  
Vol 204 (1) ◽  
pp. i1-i1
Author(s):  
Katherine E. Sleeman ◽  
Howard Kendrick ◽  
David Robertson ◽  
Clare M. Isacke ◽  
Alan Ashworth ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5044-5044
Author(s):  
Manja Wobus ◽  
Guruchandar Arulmozhivarman ◽  
Martin Kraeter ◽  
Jens Friedrichs ◽  
Martin Stoeter ◽  
...  

Abstract Introduction The identification of compounds which increase the number but also keep or enhance the activity of hematopoietic stem and progenitor cells (HSPCs) could improve the clinical outcome after autologous and allogeneic hematopoietic stem cell transplantation (HSCT). So far, most attempts to increase HSPC numbers ex vivo have been unsuccessful because of either inadequate cell numbers and/or loss of engraftment capacity and HSPC quality during expansion. Executing drug discovery screens in vertebrate systems is generally expensive, technically challenging and time consuming. Therefore, the zebrafish represents a versatile vertebrate model allowing HSPC regulation and development studies during embryogenesis and adulthood. Methods We used a semi-automated chemical screen to identify modulators of HSPC activity by transgenic (cmyb:EGFP) zebrafish embryos. Verification of identified histone deacetylase (HDAC) inhibitor candidates was carried out in vitro using human CD34+ HSPCs which were isolated from apharesis samples of healthy donors after mobilization with G-CSF by anti-CD34 coupled magnetic beads. The influence of HDAC inhibitors on HSPC phenotype, gene expression pattern as well as adhesion and migration capacity was analyzed after 5 days of treatment either in single or in co-culture with bone marrow-derived mesenchymal stromal cells (MSCs). Results The HDAC inhibitors valproic acid (VPA), resminostat and entinostat were shown to significantly amplify the number of hematopoietic precursors in a chemical in vivo zebrafish embryo screen (Arulmozhivarman et al. 2016). Treatment of human CD34+ HSPCs with these compounds in vitro resulted in a significantly increased percentage of CD34+CD90+ cells up to 60% compared to controls which showed only 2% of double positive cells as well as in 3-fold higher CD34+ and about 12-fold higher CD34+CD90+ absolute cell numbers. CD34 is a well-known surface marker for human immature HSPCs and in combination with CD90 it defines a potentially pluripotent subpopulation. In a co-culture setting, we found that VPA treated cells showed 2 to 3-fold higher attachment capacity on MSCs compared to the control cells. This finding led us to quantify the adhesive capacity of cells using static adhesion assay and atomic force microscopy based single-cell force spectroscopy (AFM-SCFS). Interestingly, detachment forces of VPA treated HSPCs were 3 times increased on MSCs compared to control cells and a similar phenotype was observed by static adhesion assay. Accordingly, the chemokine-mediated migration of VPA treated HSPCs towards SDF-1/CXCL12 was inhibited. To reveal underlying downstream molecules and mechanisms mediating the modified cellular characteristics, a whole genome expression array was carried out for HSPCs treated with VPA in comparison to untreated controls. Amongst a panel of regulated genes, the melanoma cell adhesion molecule (MCAM/CD146), Notch 3 and its downstream effector Hes-1 as well as the SDF-1 receptor CXCR-4 were found to be significantly changed. Whereas the decreased expression of CXCR4 correlates with the inhibited migration potential of VPA-treated HSPCs and Notch-3/Hes-1 have a known role in normal and malignant hematopoiesis (Gu et al. 2016), the induced expression of MCAM on HSPCs was not described so far. The result was confirmed by flow cytometry which revealed a 40% MCAM-positive cell population when treated with VPA, whereas the control showed only negative cells. Additionally, significant higher transcript levels were detected for MCAM by quantitative real-time PCR in VPA expanded cells. Recently, we described a role of MCAM in MSCs for the hematopoietic support (Stopp et al. 2013). The inducible expression in HSPCs may reflect homotypic interactions which preserve a more immature subpopulation with high stem cell activity. Conclusion We describe for the first time the ability of the HDAC inhibitors VPA, resminostat and entinostat to efficiently expand CD34+ HSPCs ex vivo especially supporting a CD34+CD90+ subpopulation with potentially high stem cell activity. Moreover, a potential role of MCAM in this context may offer new perspectives of the HSPC expansion ex vivo for the improvement of HSCT. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii53-iii54
Author(s):  
J Auzmendi-Iriarte ◽  
A Saenz-Antoñanzas ◽  
J Andermatten ◽  
A Elua-Pinin ◽  
E Aldaba ◽  
...  

Abstract BACKGROUND Glioblastoma’s origin and development is not only associated to genetic alterations, but also to epigenetic changes. Indeed, an altered expression or activity of epigenetic enzymes such as histone deacetylases (HDAC) has been associated to cancer stem cell activity, which has been widely described as a major feature for therapy resistance and tumor recurrence. In particular, inhibition of HDAC6 is an increasingly attractive pharmacological strategy, due to its association with low toxicity. Thus, the aim of the present study was to determine the impact of a new HDAC6-selective-inhibitor in glioblastoma and glioma stem cells. MATERIAL AND METHODS To test the effect of QTX compound in glioblastoma and glioma stem cell lines, cell viability after 72h of treatment was studied by MTT assay. After evaluation of IC50, QTX in vitro activity was analyzed, focusing on proliferation, apoptosis and stemness of U87-MG cell line and confirmed in a patient-derived glioma stem cell line. In vivo antitumor effect was evaluated using U87-MG cells xenografted in immunocompromised mice; after tumor formation, 5 mice were randomly selected as control group and another 5 for QTX treatment (intraperitoneal administration of 50 mg/kg; 5 days of dosing / 2 days off for 2 weeks). Mice weight was measured daily and tumor volume every two days. RESULTS We demonstrated that QTX reduces viability of all tested glioblastoma cells, even more greatly than normal astrocytes. Indeed, QTX diminishes proliferation and induces apoptosis in both conventional and patient-derived glioma cell lines. In particular, this effect was accompanied by a reduction of self-renewal properties of glioma stem cells. Interestingly, QTX in vitro activity was more effective comparing to the pan-inhibitor SAHA or the HDAC6-selective inhibitor Tubastatin A. Furthermore, QTX delayed tumor initiation and progression in vivo, without presenting significant side effects. CONCLUSION QTX compound presents a promising anti-tumor effect both in vitro and in vivo in glioblastoma, at least in part, inhibiting glioma stem cell activity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Takahisa Maruno ◽  
Akihisa Fukuda ◽  
Norihiro Goto ◽  
Motoyuki Tsuda ◽  
Kozo Ikuta ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of ‘cancer stem cells (CSCs)’ in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2352-2352
Author(s):  
Aurelie Baudet ◽  
Jonas Larsson

Abstract Abstract 2352 While the mechanisms regulating key fate decisions such as self-renewal and differentiation in hematopoietic stem and progenitor cells (HSPC) remain poorly understood, intense efforts are being devoted to develop conditions that would enable ex vivo amplification of transplantable stem cells. We have developed a screening strategy to assess modulators of human HSCPs using pooled lentiviral shRNA libraries transduced into cord blood-derived stem/progenitor cells. We use the limited persistence of HSPCs under ex vivo culture conditions as a baseline for functional selection of shRNAs leading to prolonged maintenance or expansion of undifferentiated HSPCs. This approach enables complex, pooled screens in large numbers of cells. We further take advantage of next generation sequencing to track shRNA-transduced cells with high fidelity, allowing thousands of perturbations to be tested in parallel in a single pool of cells. Here we used a library of 2500 shRNAs targeting around 800 genes, mainly kinases and phosphatases, which include large numbers of “druggable” genes. The shRNAs composing the library were monitored by next generation sequencing in cord blood CD34+ cells sampled one day after transduction and following 20 days of culture, to determine their relative change in distribution during the culture period. The sequencing of all integrated proviruses containing shRNAs generated over 3 million sequences per sample. Analysis of the shRNA distribution before and after culture in 3 replicate screens revealed a dramatic enrichment of 3 independent shRNAs targeting MAPK14 (p38α). We could confirm that inhibition of MAPK14, mediated by RNA interference, leads to a proliferation advantage of CD34+ cells in culture, identifying p38 as a possible target for ex vivo stem cell expansion. We next used the chemical inhibitor SB203580 to inhibit p38 without genetic perturbation and in a non-permanent fashion. Culture of CD34+ cells under optimized conditions for expansion (serum-free medium supplemented with SCF, TPO and FLT3) with or without SB203580 showed a 3-fold increase of the stem cell enriched CD34+CD90+ cell population during 5 days of culture in SB203580 treated cells compared to control cells. Furthermore, when transplanted to immune-deficient NSG mice, SB203580 treated cells showed a dramatic increase in repopulating activity, as evidenced by the percentage of human engraftment 10 weeks after transplantation (SB203580: 30±6.4% vs control: 7.5±3.6%, p< 0,001). Thus, under otherwise optimized culture conditions for stem cell expansion, the addition of the p38 inhibitor leads to a significant increase in stem cell activity. To understand the basis for the increase in stem cell activity, we assayed SB203580 treated cells with respect to cell cycling and survival rate, but found a similar cell division history (shown by cytoplasmic dye dilution assays) and similar levels of apoptotic cells (shown by Annexin V staining) compared to control cells. Interestingly, however, when the cells were assayed for reactive oxygen species (ROS), we detected significantly reduced levels of ROS in SB203580 treated cells, implicating modulation of ROS as a possible mechanism behind the enhanced stem cell output. Taken together, using a functional forward genetic screen, we have been able to identify p38 MAP kinase as a highly promising target to enhance hematopoietic stem cell activity in ex vivo expansion settings. These results further support the feasibility of pooled RNAi screens in conjunction with next generation sequencing to identify genes and pathways that regulate primary human stem cell populations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (26) ◽  
pp. 6255-6258 ◽  
Author(s):  
Aurélie Baudet ◽  
Christine Karlsson ◽  
Mehrnaz Safaee Talkhoncheh ◽  
Roman Galeev ◽  
Mattias Magnusson ◽  
...  

We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells, using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.


Sign in / Sign up

Export Citation Format

Share Document