Accelerating numerical wave propagation using wavefield adapted meshes. Part I: forward and adjoint modelling
SUMMARY An order of magnitude speed-up in finite-element modelling of wave propagation can be achieved by adapting the mesh to the anticipated space-dependent complexity and smoothness of the waves. This can be achieved by designing the mesh not only to respect the local wavelengths, but also the propagation direction of the waves depending on the source location, hence by anisotropic adaptive mesh refinement. Discrete gradients with respect to material properties as needed in full waveform inversion can still be computed exactly, but at greatly reduced computational cost. In order to do this, we explicitly distinguish the discretization of the model space from the discretization of the wavefield and derive the necessary expressions to map the discrete gradient into the model space. While the idea is applicable to any wave propagation problem that retains predictable smoothness in the solution, we highlight the idea of this approach with instructive 2-D examples of forward as well as inverse elastic wave propagation. Furthermore, we apply the method to 3-D global seismic wave simulations and demonstrate how meshes can be constructed that take advantage of high-order mappings from the reference coordinates of the finite elements to physical coordinates. Error level and speed-ups are estimated based on convergence tests with 1-D and 3-D models.