A statistical representation and frequency-domain window-rejection algorithm for single-station HVSR measurements

2020 ◽  
Vol 221 (3) ◽  
pp. 2170-2183 ◽  
Author(s):  
Brady R Cox ◽  
Tianjian Cheng ◽  
Joseph P Vantassel ◽  
Lance Manuel

SUMMARY The horizontal-to-vertical spectral ratio (HVSR) of ambient noise measurement is commonly used to estimate a site's resonance frequency (${f_0}$). For sites with a strong impedance contrast, the HVSR peak frequency (${f_{0,\mathrm{ HVSR}}}$) has been shown to be a good estimate of ${f_0}$. However, the random nature of ambient noise (both in time and space), in conjunction with variable environmental conditions and sensor coupling issues, can lead to uncertainty in ${f_{0,\mathrm{ HVSR}}}$ estimates. Hence, it is important to report ${f_{0,\mathrm{ HVSR}}}$ in a statistical manner (e.g. as a mean or median value with standard deviation). In this paper, we first discuss widely accepted procedures to process HVSR data and estimate the variance in ${f_{0,\mathrm{ HVSR}}}$. Then, we propose modifications to improve these procedures in two specific ways. First, we propose using a lognormal distribution to describe ${f_{0,\mathrm{ HVSR}}}$ rather than the more commonly used normal distribution. The use of a lognormal distribution for ${f_{0,\mathrm{ HVSR}}}$ has several advantages, including consistency with earthquake ground motion processing and allowing for a seamless transition between HVSR statistics in terms of both frequency and its reciprocal, period. Second, we introduce a new frequency-domain window-rejection algorithm to decrease variance and enhance data quality. Finally, we use examples of 114 high-variance HVSR measurements and 77 low-variance HVSR measurements collected at two case study sites to demonstrate the effectiveness of the new rejection algorithm and the proposed statistical approach. To encourage their adoption, and promote standardization, the rejection algorithm and lognormal statistics presented in this paper have been incorporated into hvsrpy, an open-source Python package for HVSR processing.

2020 ◽  
Vol 223 (2) ◽  
pp. 1040-1053
Author(s):  
Tianjian Cheng ◽  
Brady R Cox ◽  
Joseph P Vantassel ◽  
Lance Manuel

SUMMARY The horizontal-to-vertical spectral ratio (HVSR) of ambient noise is commonly used to infer a site's resonance frequency (${f_{0,site}}$). HVSR calculations are performed most commonly using the Fourier amplitude spectrum obtained from a single merged horizontal component (e.g. the geometric mean component) from a three-component sensor. However, the use of a single merged horizontal component implicitly relies on the assumptions of azimuthally isotropic seismic noise and 1-D surface and subsurface conditions. These assumptions may not be justified at many sites, leading to azimuthal variability in HVSR measurements that cannot be accounted for using a single merged component. This paper proposes a new statistical method to account for azimuthal variability in the peak frequency of HVSR curves (${f_{0,HVSR}}$). The method uses rotated horizontal components at evenly distributed azimuthal intervals to investigate and quantify azimuthal variability. To ensure unbiased statistics for ${f_{0,HVSR}}$ are obtained, a frequency-domain window-rejection algorithm is applied at each azimuth to automatically remove contaminated time windows in which the ${f_{0,HVSR}}$ values are statistical outliers relative to those obtained from the majority of windows at that azimuth. Then, a weighting scheme is used to account for different numbers of accepted time windows at each azimuth. The new method is applied to a data set of 114 HVSR measurements with significant azimuthal variability in ${f_{0,HVSR}}$, and is shown to reliably account for this variability. The methodology is also extended to the estimation of a complete lognormal-median HVSR curve that accounts for azimuthal variability. To encourage the adoption of this statistical approach to accounting for azimuthal variability in single-station HVSR measurements, the methods presented in this paper have been incorporated into hvsrpy, an open-source Python package for HVSR processing.


2021 ◽  
Vol 225 (2) ◽  
pp. 1032-1047
Author(s):  
A-S Mreyen ◽  
L Cauchie ◽  
M Micu ◽  
A Onaca ◽  
H-B Havenith

SUMMARY Origins of ancient rockslides in seismic regions can be controversial and must not necessarily be seismic. Certain slope morphologies hint at a possible coseismic development, though further analyses are required to better comprehend their failure history, such as modelling the slope in its pre-failure state and failure development in static and dynamic conditions. To this effect, a geophysical characterization of the landslide body is crucial to estimate the possible failure history of the slope. The Balta rockslide analysed in this paper is located in the seismic region of Vrancea-Buzau, Romanian Carpathian Mountains and presents a deep detachment scarp as well as a massive body of landslide deposits. We applied several geophysical techniques on the landslide body, as well as on the mountain crest above the detachment scarp, in order to characterize the fractured rock material as well as the dimension of failure. Electrical resistivity measurements revealed a possible trend of increasing fragmentation of rockslide material towards the valley bottom, accompanied by increasing soil moisture. Several seismic refraction surveys were performed on the deposits and analysed in form of P-wave refraction tomographies as well as surface waves, allowing to quantify elastic parameters of rock. In addition, a seismic array was installed close to the detachment scarp to analyse the surface wave dispersion properties from seismic ambient noise; the latter was analysed together with a colocated active surface wave analysis survey. Single-station ambient noise measurements completed all over the slope and deposits were used to further reveal impedance contrasts of the fragmented material over in situ rock, representing an important parameter to estimate the depth of the shearing horizon at several locations of the study area. The combined methods allowed the detection of a profound contrast of 70–90 m, supposedly associated with the maximum landslide material thickness. The entirety of geophysical results was used as basis to build up a geomodel of the rockslide, allowing to estimate the geometry and volume of the failed mass, that is, approximately 28.5–33.5 million m3.


1987 ◽  
Vol 77 (4) ◽  
pp. 1127-1146
Author(s):  
Giuseppe De Natale ◽  
Raul Madariaga ◽  
Roberto Scarpa ◽  
Aldo Zollo

Abstract Time and frequency domain analyses are applied to strong motion data recorded in Friuli, Italy, during 1976 to 1977. An inversion procedure to estimate spectral parameters (low frequency level, corner frequency, and high frequency decay) has been applied to displacement spectra using a simple earthquake source model with a single corner frequency. The data were digitized accelerograms from ENEA-ENEL portable and permanent networks. Instrument-corrected SH waves were selected from a set of 138 three-component, hand-digitized records and 28 automatically digitized records. Thirty-eight events with stations having 8 to 32 km epicentral distance were studied. Different stress drop estimates were performed showing high values (200 to 300 bars, on the average) with seismic moments ranging from 2.8 × 1022 to 8.0 × 1024 dyne-cm. The observation of systematic higher values of Brune stress drop (obtained from corner frequencies) with respect to other time and frequency domain estimates of stress release, and the evidence on time series of multiple rupture episodes suggest that the observed corner frequencies are most probably related to subevent ruptures rather than the overall fault size. Seven events recorded at more than one station show a good correlation between rms, Brune, and dynamic stress drops, and a constant scaling of this parameter as a function of the seismic moment. When single station events are also considered, a slight moment dependence of these three stress drop estimates is observed differently. This may be explained by an inadequacy of the ω−2 high-frequency decay of the source model or by high-frequency attenuation due to propagation effects. The high-frequency cutoff of acceleration spectra indicates the presence of an Fmax in the range of 5 to 14 Hz, except for the stations where local site effects produce spectral peaks.


1993 ◽  
Vol 83 (5) ◽  
pp. 1595-1609 ◽  
Author(s):  
Hiroaki Yamanaka ◽  
Marijan Dravinski ◽  
Hiroshi Kagami

Abstract Continuous measurement of microtremors at two sites on basement rock and sediments was carried out in Los Angeles, California, in order to understand the fundamental characteristics of microtremors. A predominant peak with a period of about 6.5 sec was found in the microtremor spectra in both media. The spectral amplitude of the peaks varied gradually with time in a similar manner at the two sites. Their time-variant characteristics are in agreement with change in oceanic swell height observed at an oceanic buoy in the southwest of Los Angeles. This suggests that they originate from an oceanic disturbance. On the other hand, a clear daily variation of spectral amplitudes at a period of 0.3 sec indicates that short-period microtremors are caused by cultural noises. It was found that the spectral ratio of long-period microtremors between the basement and the sediments was repeatable, although the spectral amplitudes at the two sites were time-variant. The spectral ratio of the long-period microtremors was similar to that derived from strong motion records. This suggests the applicability of spectral ratios of microtremors to assess the effects of deep sediments on long-period earthquake ground motion.


2021 ◽  
Author(s):  
Paola Capone ◽  
Vincenzo Del Gaudio ◽  
Janusz Wasowski ◽  
Wei Hu ◽  
Nicola Venisti ◽  
...  

<p>On 12 May 2008, the mountainous area of Longmenshan, which separates the Tibetan Plateau from the Sichuan Basin, was hit by the 8.0 Ms Wenchuan earthquake which triggered about 200,000 landslides, some of which caused river damming with the formation of temporary lakes. Failures of the landslide dams can induce severe flooding downstream, therefore, it is important to study their structure and mechanical properties in order to evaluate their stability conditions.</p><p>The present study investigates the landslide dam deposits of a rock avalanche triggered in Yang Jia Gou, in Sichuan Province, using single-station three component recordings of ambient noise, with the aim of obtaining information about thickness and mechanical properties of the deposits from their resonance properties. Three noise measurement campaigns and two ERT surveys were conducted to support data interpretation. The data were analyzed using the traditional Nakamura’s technique, HVNR, and the innovative technique HVIP, both based on the calculation of ratios between horizontal and vertical amplitude of ground motion. Both methods revealed the presence  of resonance peaks, a major one at lower frequency, and a minor one at higher frequencies, representative of the deposit layering. HVNR showed a considerable instability in terms of amplitude of H/V, likely because this technique analyzes the entire noise wave field recorded, so to be subject to a large variability related to a variable composition of the noise field. This problem does not affect the HVIP method, which is based on the analysis of the ellipticity of Rayleigh waves, isolated from the recording.</p><p>Rayleigh wave ellipticity curves were used as targets in the inversion phase to obtain the velocity profile of the site. The subsoil model was  constrained by the data derived from the resistivity profiles. The results revealed:  different velocity layers inside the deposit; lateral variations in thickness, in accordance with the higher frequency peak, and in mechanical properties, with an increase of stiffness, probably due to a major portion of rocky blocks; an increase in thickness of the entire deposit, probably because of the irregularities of the substrate.</p><p>Further investigations are in progress through other kinds of noise analysis exploiting the synchronization of simultaneous recordings. This can provide additional constraints (to be derived from the dispersion of group velocity of Rayleigh waves) and aid resolving interpretation ambiguities.</p>


Author(s):  
M. Fotouhimehr ◽  
E. Shabani ◽  
N. Mirzaei ◽  
E. Haghshenas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document