Understanding seismic path biases and magmatic activity at Mount St Helens volcano before its 2004 eruption

2020 ◽  
Vol 222 (1) ◽  
pp. 169-188 ◽  
Author(s):  
S Gabrielli ◽  
L De Siena ◽  
F Napolitano ◽  
E Del Pezzo

SUMMARY In volcanoes, topography, shallow heterogeneity and even shallow morphology can substantially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St Helens volcano before its 2004 eruption. The results show the characteristic dominance of scattering attenuation in volcanoes at lower frequencies (3–6 Hz), while absorption is the primary attenuation mechanism at 12 and 18 Hz. Scattering attenuation is similar but seismic absorption is one order of magnitude lower than at open-conduit volcanoes, like Etna and Kilauea, a typical behaviour of a (relatively) cool magmatic plumbing system. Still, the seismic albedo (measuring the ratio between seismic energy emitted and received from the area) is anomalously high (0.95) at 3 Hz. A radiative-transfer forward model of far- and near-field envelopes confirms this is due to strong near-receiver scattering enhancing anomalous phases in the intermediate and late coda across the 1980 debris avalanche and central crater. Only above this frequency and in the far-field diffusion onsets at late lapse times. The scattering and absorption parameters derived from MLTWA are used as inputs to construct 2-D frequency-dependent bulk sensitivity kernels for the S-wave coda in the multiple-scattering (using the Energy Transport Equations—ETE) and diffusive (AD, independent of MLTWA results) regimes. At 12 Hz, high coda-attenuation anomalies characterize the eastern side of the volcano using both kernels, in spatial correlation with low-velocity anomalies from literature. At 3 Hz, the anomalous albedo, the forward modelling, and the results of the tomographic imaging confirm that shallow heterogeneity beneath the extended 1980 debris-avalanche and crater enhance anomalous intermediate and late coda phases, mapping shallow geological contrasts. We remark the effect this may have on coda-dependent source inversion and tomography, currently used across the world to image and monitor volcanoes. At Mount St Helens, higher frequencies and deep borehole data are necessary to reconstruct deep volcanic structures with coda waves.

2020 ◽  
Author(s):  
Simona Gabrielli ◽  
Luca De Siena ◽  
Matteo Spagnolo

<p>In volcanoes, topography, shallow heterogeneity, and even shallow morphology can substantially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St. Helens volcano (MSH) before its 2004 eruption. The results show the typical dominance of scattering attenuation in volcanoes at lower frequencies (3 - 6 Hz), while absorption is the primary attenuation mechanism at 12 Hz and 18 Hz. Still, the seismic albedo (measuring the ratio between seismic energy emitted and received from the area) is anomalously-high (0.95) at 3 Hz.</p><p>A radiative-transfer forward model of far- and near-field envelopes confirms this is due to strong near-receiver scattering enhancing anomalous phases in the intermediate and late coda across the 1980 debris avalanche and central crater. Only above this frequency and in the far-field, diffusion onsets at late lapse times.  We also implemented a layered model with a shallower layer with increased scattering properties to model late coda envelopes. While the broadening of late coda phases improves, this model cannot explain the phases of the intermediate coda with higher amplitude than the direct waves.</p><p>The scattering and absorption parameters derived from MLTWA are used as inputs to construct 2D frequency-dependent bulk sensitivity kernels for the S-wave coda in the multiple-scattering (using the Energy Transport Equations - ETE) and diffusive (AD, independent of MLTWA results) regimes. At 12 Hz, high coda-attenuation anomalies characterise the eastern side of the volcano using both kernels, in spatial correlation with low-velocity anomalies from literature. At 3 Hz, the anomalous albedo, the forward modelling, and the results of the tomographic imaging confirm that shallow heterogeneity beneath the extended 1980 debris-avalanche and crater enhance anomalous intermediate and late coda phases, mapping shallow geological contrasts.</p><p>The geomorphological map of MSH highlights extremely rough landforms (hummocky structures) of the already complex morphology of the debris avalanche. The comparison with the attenuation tomography reveals several matches, not only with the debris avalanche itself but also with other areas in the south flank of MSH, like the volcanoclastic plane, affected by intense eruptions in the past (e.g. Cougar stage, 28-18 ka).</p><p>We remark the effect those may have on coda-dependent source inversion and tomography, currently used across the world to image and monitor volcanoes.</p>


1991 ◽  
Vol 81 (1) ◽  
pp. 162-178
Author(s):  
F. Su ◽  
K. Aki ◽  
N. N. Biswas

Abstract A new quarry blast-earthquake discrimination method is presented based on the analysis of seismic coda waves. Quarry blasts and local earthquakes in the area encompassing the south-central Mojave Desert and Eastern Transverse Ranges were used to test this method. We found that the coda decay rate Qc−1 is significantly higher for quarry blasts than earthquakes for lower frequencies (1.5 and 3 Hz) for lapse time up to about 30 sec. This result is attributed to the greater contribution of surface waves to quarry blasts due to the shallowness of their source depth. The difference in Qc−1, however, disappears for lapse time greater than 30 sec for the same frequency range as well as for higher frequencies (6 and 12 Hz) for lapse time greater than 20 sec. This suggests that the coda waves, at the lapse time greater than these critical values, are dominated by the same type of body waves, probably S waves, for both quarry blasts and earthquakes. The power spectrum P0(ω) obtained after the correction for attenuation was compared between earthquakes and quarry blasts at the same stations, and a significant difference was found in the spectral shape between these two data sets. The curves of power spectrum P0(ω) versus frequency for quarry blasts decrease more sharply than for earthquakes at high frequencies, indicating a lack of energy in high frequencies for quarry blasts as compared to earthquakes. The different frequency dependence of power spectrum P0(ω) between quarry blasts and earthquakes is attributed to their different source properties and can be used for seismic discrimination of quarry blasts from earthquakes.


2009 ◽  
Vol 102 (24) ◽  
Author(s):  
D. Anache-Ménier ◽  
B. A. van Tiggelen ◽  
L. Margerin
Keyword(s):  

2019 ◽  
Vol 14 (02) ◽  
pp. 2050006
Author(s):  
Ia Shengelia ◽  
Nato Jorjiashvili ◽  
Tea Godoladze ◽  
Zurab Javakhishvili ◽  
Nino Tumanova

Three hundred and thirty-five local earthquakes were processed and the attenuation properties of the crust in the Racha region were investigated using the records of seven seismic stations. We have estimated the quality factors of coda waves ([Formula: see text]) and the direct [Formula: see text] waves ([Formula: see text]) by the single back scattering model and the coda normalization methods, respectively. The Wennerberg’s method has been used to estimate relative contribution of intrinsic ([Formula: see text]) and scattering ([Formula: see text]) attenuations in the total attenuation. We have found that [Formula: see text] and [Formula: see text] parameters are frequency-dependent in the frequency range of 1.5–24[Formula: see text]Hz. [Formula: see text] values increase both with respect to lapse time window from 20[Formula: see text]s to 60[Formula: see text]s and frequency. [Formula: see text] and [Formula: see text] parameters are nearly similar for all frequency bands, but are smaller than [Formula: see text]. The obtained results show that the intrinsic attenuation has more significant effect than scattering attenuation in the total attenuation. The increase of [Formula: see text] with lapse time shows that the lithosphere becomes more homogeneous with depth.


2020 ◽  
Author(s):  
Tuo Zhang ◽  
Christoph Sens-Schönfelder

<p>Scattered seismic coda waves are frequently used to characterize small scale medium heterogeneities, intrinsic attenuation or temporal changes of wave velocity. Spatial variability of these properties raises questions about the spatial sensitivity of seismic coda waves. Especially the continuous monitoring of medium perturbations using ambient seismic noise led to a demand for approaches to image perturbations observed with coda waves. An efficient approach to localize the property variations in the medium is to invert the observations from different source-receiver combinations and different lapse times in the coda for the location of the perturbations. The key of such an inversion is calculating the coda-wave sensitivity kernels which describe the connection between observations and the perturbation. Most discussions of sensitivity kernels use the acoustic approximation and assume wave propagation in the diffusion regime.</p><p>We model 2-D  elastic multiple nonisotropic scattering in a random medium with spatially variable heterogeneity and attenuation. The Monte Carlo method is used to numerically solve the radiative transfer equation that describes the wave scattering process here. Recording of the specific intensity of the wavefield <strong><em>I</em>(<em>r,n,t</em>)</strong> which contains the complete information about the energy at position <strong><em>r</em></strong> at time <em>t</em> with the propagation direction <strong><em>n</em></strong> allows us to calculate sensitivity kernels according to rigorous theoretical derivations. We investigate sensitivity kernels that describe the relationships between changes of the model parameters P- and S-wave velocity, P- and S-wave attenuation, and the strength of fluctuation on the one hand and the observables envelope amplitude, travel time changes and decorrelation on the other hand. These sensitivity kernels reflect the effect of the spatial variations of medium properties on wavefield. Our work offers a direct approach to compute these new expressions and adapt them to spatially variable heterogeneities. The sensitivity kernels we derived are the first step in the development of an inversion approach based on coda waves.</p>


2020 ◽  
Author(s):  
Theodoros Aspiotis ◽  
Ioannis Koutalonis ◽  
Georgios Michas ◽  
Filippos Valianatos

<p>Santorini's caldera being unrest during 2011-2012, led several studies to raise the important question of whether seismicity is associated with an impending and potential volcanic eruption or it solely relieves the accumulated tectonic energy. In the present work we study seismic coda waves generated by local earthquake events prior, during and after the seismic crisis that occurred within the caldera area. Coda waves are interpreted as scattered seismic waves generated by heterogeneities within the Earth, i.e. by faults, fractures, velocity and/or density boundaries and anomalies, etc. In particular, we utilize the three components of the seismograms recorded by three seismological stations on the island of Santorini and estimate the duration of the coda waves by implementing a three step procedure that includes the signal-to-noise ratio, the STA/LTA method and the short time Fourier transform. The final estimation was verified or reestimated manually due to the existent ambient seismic noise. Due to the nature and the path complexity of the coda waves and towards achieving a unified framework for the study of the immerse geo-structural seismotectonic complexity of the Santorini volcanic complex, we use Non-Extensive Statistical Physics (NESP) to study the probability distribution functions (pdfs) of the increments of seismic coda waves. NESP forms a generalization of the Boltzmann-Gibbs statistical mechanics, that has been extensively used for the analysis of semi-chaotic systems that exhibit long-range interactions, memory effects and multi-fractality. The analysis and results demonstrate that the seismic coda waves increments deviate from the Gaussian shape and their respective pdfs could adequately be described and processed by the q-Gaussian distribution. Furthermore and in order to investigate the dynamical structure of the volcanic-tectonic activity, we estimate the q-indices derived from the pdfs of the coda wave time series increments during the period 2009 - 2014 and present their variations as a function of time and as a function of the local magnitude (M<sub>L</sub>) of the events prior, during and after the caldera unrest.</p> <p> </p> <p><strong> Acknowledgments. </strong>We acknowledge support by the project “HELPOS – Hellenic System for Lithosphere Monitoring” (MIS 5002697) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece & European Union (ERDF)</p>


Sign in / Sign up

Export Citation Format

Share Document